

Air Quality Study and Cumulative Effects Assessment in Support of an Application under Alternative Low-Carbon Fuels Regulation (O.Reg.79/15)

St Marys Cement Inc. (Canada), Bowmanville Facility

Report to: Ministry of the Environment,

Conservation and Parks

Client Services and Permissions Branch

135 St Clair Ave W, 1st Floor

Toronto, Ontario

M4V 1P5

Prepared for: St. Marys Cement Inc. (Canada)

Facility Address: 410 Bowmanville Avenue

Bowmanville, Ontario

Prepared by: Xiaoxi (Winnie) Song, M.Sc., P. Eng.

Senior Environmental Engineer

Reviewed by: Bridget Mills, P.Eng.

Senior Environmental Engineer

BCX File No. 1003-01.54

Date: January 2020

Executive Summary

BCX Environmental Consulting (BCX) was retained by St. Marys Cement Inc. (Canada) (SMC) to prepare an Air Quality Study and Cumulative Effects Assessment (Study) in support of an application under the Alternative Low-Carbon Fuels (ALCF) Regulation (O.Reg. 79/15) for their cement plant located in Bowmanville, Ontario (Facility).

The SMC Facility is located at 410 Bowmanville Avenue South in Bowmanville, Ontario on the north shore of Lake Ontario and south of Highway 401. SMC is preparing an application to support the following:

- Thermal replacement of 30% of the conventional fuels (coal, petroleum coke) currently
 used at the Facility with ALCFs, which is an approximate increase from the current 100
 tonnes of ALCFs used per day to 400 tonnes of ALCFs per day;
- Adding biomass, cellulosic and plastic materials derived from industrial and/or postconsumer sources, which cannot be recycled, are not considered hazardous and are not derived from animals or the processing and preparations of food, to the list of approved ALCFs at the Facility based on the recent demonstration project at the Facility;
- Installing new equipment at the Facility to accommodate the ALCFs; and
- Increasing the capacity of the current alternative fuels storage at the Facility using enclosed containers and buildings.

The purpose of this Study is to respond to stakeholder and public comments. Specifically, this Study quantifies future local air quality and determines if there will be any significant change in air quality in the community as a result of replacing up to 30% of conventional fuel with ALCF on a thermal basis.

The Study took a very conservative approach to provide the community with a high level of confidence in the Study conclusions. This means that the predicted cumulative concentrations and the predicted change in air quality are purposefully over-estimated.

Differing from the ALCF demonstration report which was to demonstrate compliance with the Ontario Ministry of the Environment, Conservation and Parks' (Ministry's) Point-Of-Impingement (POI) standards and to assess statistically significant changes under Ontario Regulation 419/05 (Reg. 419), this Study considers both stationary and mobile sources from the Facility, as well as cumulative impacts from major local sources.

The air emission sources from the Facility include both stationary and mobile air emissions from the cement plant, as well as stationary and mobile emissions from the quarry, the dock area and Canada Building Materials' (CBM's aggregate operations).

Emissions of an extensive suite of Contaminants of Potential Concern (CoPCs) from the kiln stack are estimated using the 2018 Ministry approved source testing data. Emissions of CoPCs from other sources are estimated using published emission factors (US Environmental Protection Agency and the Ministry), engineering estimates, mass balance, and manufacturer's performance specifications.

Cumulative effects are considered by using conservative background concentrations of each CoPC obtained from local ambient monitoring stations. In developing appropriate future background concentrations for the CoPCs, the planned Durham-York Energy Centre (DYEC) system optimization is considered. The modelled concentrations are added to the background concentrations and this result is compared to the applicable ambient air quality criteria.

Air dispersion modelling is completed using the US EPA AERMOD model (Version 16216r) as per requirements set out in the Air Dispersion Modelling Guideline of Ontario (ADMGO). Due to the height and the proximity of the kiln stack to Lake Ontario, shoreline effect factors are generated using the CALPUFF model (Version 7) to account for reduced air dispersion resulting from the temperature difference between water and land. These factors are incorporated in the AERMOD modelling input for the kiln stack to account for potential impact of shoreline effects.

The study concludes that:

- no significant cumulative local air quality impacts in the community are expected as a result
 of the proposed future use of ALCF. This is because using very conservative assumptions
 and conservative local background levels, all CoPCs are below their ambient air quality
 criteria at all sensitive receptors in the community except for benzene (annual) and BaP (24
 hour and annual);
- with respect to benzene (annual) and BaP (24 hour and annual), the background levels locally and across the province are well above their respective ambient air quality criteria.
 The contribution from the plant to the cumulative concentration for these two CoPCs is small and on its own, the facility is well below the ambient air quality criteria;
- no significant change in local air quality in the community is expected as a result of the use
 of ALCF. This is because the predicted change in cumulative impacts is very small, even
 when the study purposefully over-estimates the emissions associated with the future use
 of ALCF; and
- The study findings are consistent with the "Alternative Fuel Demonstration Project Summary Report", prepared by BCX, dated May 2019.

Table of Contents

Execu	ıtive Sı	ımmary	ii
1.0	INTI	RODUCTION	1
	1.1	Project Background	1
		1.1.1 2018 Alternative Fuel Demonstration Project	2
	1.2	Future Proposed Use of ALCF	2
	1.3	Purpose of this Study	3
2.0	STU	DY SCOPE	4
	2.1	Study Area and Sensitive Receptors	4
	2.2	Compounds of Potential Concern (CoPCs) and Ambient Air Quality Criteria	4
		2.2.1 Benzo(a)pyrene (BaP) AAQCs	5
3.0	AM	BIENT BACKGROUND	8
	3.1	Existing Scenario	8
	3.2	Future Scenario	9
4.0	EMI	SSIONS SCENARIOS AND EMISSION ESTIMATION METHODOLOGY	11
	4.1	Emission Scenarios	11
		4.1.1 Existing Operations	11
		4.1.2 Future Operations	11
	4.2	Emission Estimation Methodologies	14
		4.2.1 Emissions from the Kiln Stack	14
		4.2.2 Emissions from Other Stationary Sources	15
		4.2.3 Emissions from Wind Erosion	15
		4.2.4 Road Dust Emissions from Vehicle Traveling on Unpaved Roads	15
		4.2.5 Road Dust Emissions from Vehicle Traveling on Paved Roads	15
		4.2.6 Tailpipe Emissions from On-Road Vehicles	15
		4.2.7 Tailpipe Emissions for Non-Road Vehicles	16
5.0	AIR	DISPERSION MODELLING	16
	5.1	Model Selection and Use	16
	5.2	General Settings	17
	5.3	Meteorology	17
	5 4	Terrain	17

	5.5	Modelling Domain and Receptor Grid	17
	5.6	Source Inputs	17
	5.7	Shoreline Effect Assessment	18
6.0	RESU	ILTS	19
	6.1	Assessment of Cumulative Effects	19
	6.2	Assessment of Change in Local Air Quality	20
7.0	ODO	URS	23
8.0	CON	CLUSIONS	23
9.0	REFE	RENCES	24
Table 3 Table 4 Table 6	2-1: Su 3-1: Ba I-1: Em 3-1 Ass	mmary of Applicable Air Quality Criteria and Standards	10 12 21
APPEN	IDICE:	S	
A :	ما: ۵	Figures	
Append		Figures Detailed Assumptions of Modelling Scenarios	
Appen		MOVES Emission Factors	
Appen		Key Emission Calculation Sheets	
Appen		Shoreline Effect Assessment	
Appen		AERMOD Supporting Files	
Appen		Maximum Modelled Concentrations for Existing and Future Scenarios	

1.0 INTRODUCTION

BCX Environmental Consulting (BCX) was retained by St. Marys Cement Inc. (Canada) (SMC) to prepare an Air Quality Study and Cumulative Effects Assessment (Study) in support of an application under the Alternative Low-Carbon Fuels (ALCF) Regulation (O.Reg. 79/15) for their cement plant located in Bowmanville, Ontario (Facility).

1.1 Project Background

The Facility is located at 410 Bowmanville Avenue South in Bowmanville, Ontario on the north shore of Lake Ontario and south of Highway 401 as shown in Figure 1-1 (Appendix A). A detailed site layout showing the current operations is presented in Figure 1-2 (Appendix A).

The Facility primarily produces Portland Cement by combing materials bearing calcium carbonate, silica, alumina and iron oxide at high temperatures to produce clinker. The clinker is either shipped as a product or is subsequently ground with finishing materials such as gypsum and limestone to produce cement on site.

In addition to the cement plant, the Facility includes a limestone quarry and a dock area to receive raw materials and conventional fuels and to ship products. The dock area is managed by Cargo Dockers Inc. CBM Aggregates, a Division of SMC, also operates a construction grade aggregate operation (crushing and storage) on site.

The cement plant and the limestone quarry are currently approved under Environmental Compliance Approvals (ECA Number 0469-9YUNKSK for air and ECA Number 7024-9XUK4C for waste). These approvals allow for the regular use of the following types of low carbon fuels (LCF) at a maximum rate of 96 tonnes per day:

- Woodwaste as defined in O.Reg. 347; and
- Woody biomass consisting of mainly of woodchips with some fragments of plastic, shingles, laminate, surface coatings obtained from industrial and post-consumer sources such as construction and demolition waste, which does not contain asbestos and hazardous waste as defined under O.Reg. 347 and contains:
 - (a) Less than 10% non-woody material such as plastic, shingles, laminate, surface coatings and other material;
 - (b) Less than 5% of treated wood;
 - (c) Less than or equal to 1% total halogen content; and
 - (d) Less than 25% moisture by weight.

In addition, the facility also has demonstration ECAs (ECA No. 4614-826K9W for air and ECA No.1255-7QVJ2N for waste). These approvals permit the facility to undertake time-limited demonstration projects to collect data to support the future use of ALCF defined as follows:

 Post-composting plastic polymers and woody residuals defined as "shredded and dried plastic film and other plastic materials and woody materials removed from finished compost"; and

- Plastic polymers, paper fibres and woody residuals derived from industrial and/or post consumer sources defined as "shredded plastic and other materials removed from post consumer recycling or from industrial manufacturing process".

1.1.1 2018 Alternative Fuel Demonstration Project

From September to December 2018, the Facility carried out an ALCF demonstration project to use residuals derived from industrial and/or post-consumer sources including plastic polymers, paper fibres and woody materials as alternative fuels under their demonstration approvals.

Per the ECAs, the results of the demonstration project are documented in the "Alternative Fuel Demonstration Project Summary Report, prepared by BCX, dated May 2019" and the "Alternative Fuel Demonstration Project Summary Waste Report, prepared by HDR Inc. (HDR), dated May 2019". The studies showed that:

- The allowable maximum alternative fuel consumption rate of approximately 30% thermal replacement can be readily achieved from an operational perspective;
- The Facility fully complied with their Operational Limits, their Performance Objectives, and with Ontario Regulation 419/05 (Reg. 419) while demonstrating any amount of ALCF;
- The data obtained from the source testing program demonstrated that relative to baseline conditions, there was no statistically significant difference in kiln stack emissions and Point -Of-Impingement (POI) concentrations of all contaminants as a result of the use of ALCF;
- The data obtained from the ambient monitoring program demonstrated that there was no statistically significant difference in ambient air concentrations of any contaminant as a result of the use of ALCF, relative to baseline conditions; and
- The demonstration project provides an extensive Ministry validated/reviewed data set to be used in the environmental studies to support an application for regular use of ALCFs.

1.2 Future Proposed Use of ALCF

SMC is preparing an application to support the following:

- Thermal replacement of 30% of the conventional fuels (coal, petroleum coke) currently
 used at the Facility with ALCFs, which is an approximate increase from the current 100
 tonnes of ALCFs used per day to 400 tonnes of ALCFs per day;
- Adding biomass, cellulosic and plastic materials derived from industrial and/or postconsumer sources, which cannot be recycled, are not considered hazardous and are not derived from animals or the processing and preparations of food, to the list of approved ALCFs at the Facility based on the recent demonstration project at the Facility;

• Increasing the capacity of the current alternative fuels storage at the Facility using enclosed containers and buildings.

Installing new equipment at the Facility to accommodate the ALCFs; and

ALCF will be delivered in enclosed trucks which will access the expanded/new fuel storage buildings via the existing delivery route for LCF. A detailed site layout showing the proposed ALCF storage buildings and ALCF delivery route is presented in Figure 1-3 (see Appendix A). Other than a reduction in conventional fuel consumption, there will be no changes to any other operations at the Facility.

1.3 Purpose of this Study

BCX File: 1003-01.54

The purpose of this Study is to respond to stakeholder and public comments. Specifically, this Study should quantify future local air quality and determine if there will be any significant change in air quality in the community as a result of replacing up to 30% of conventional fuel with ALCF on a thermal basis.

This Study differs from the ALCF demonstration report which was to demonstrate compliance with the Ontario Ministry of the Environment, Conservation and Parks' (Ministry's) POI standards and to assess statistically significant changes under Reg. 419. The ALCF demonstration report does not specifically address ambient air quality in the community which is influenced by other sources such as local major industrial sources, transportation, residential heating and long-range transport (i.e. cumulative effects). The ALCF demonstration report, however, does provide site-specific Ministry approved emissions data to support this Study.

This study, therefore, assesses all significant air emission sources from existing and the proposed future operations at the Facility, and compares their impact to determine change in local air quality. Emission sources include both stationary and mobile air emissions from the cement plant, as well as stationary and mobile emissions from the quarry, the dock area and CBM's aggregate operations.

Cumulative effects are considered by using conservative background concentrations of each Compound of Potential Concern (CoPC) obtained from local ambient monitoring stations. The modelled concentrations are added to the background concentrations and this result is compared to the applicable ambient air quality criteria, which is a desirable concentration of a contaminant in air used to assess general air quality.

This Study takes a very conservative approach to provide the community with a high level of confidence in the Study conclusions. This means that the predicted cumulative concentrations and the predicted change in air quality are purposefully over-estimated.

The ALCF approval, if granted, does not replace the requirement for an ECA (Air) supported by a site-wide Emission Inventory and Dispersion Modelling (ESDM) Report under Reg. 419.

2.0 STUDY SCOPE

2.1 Study Area and Sensitive Receptors

A study area of 10km x 10km centred from the Bowmanville Facility's kiln stack is used to assess potential off-site impacts from the project on local air quality (see Figure 1-1 in Appendix A).

A tiered receptor grid as per Ministry's requirements in the ADMGO is used for the entire study area. In addition, the closest existing sensitive receptors representing the following five communities are selected for further study (see Figure 1-1):

- R1: Residential subdivision north of Baseline Road;
- R2: Residential community along Lake Ontario;
- R3: Agricultural farmhouses north of the 401 and south of Baseline Road;
- R4: Legal non-conforming home north of the plant and south of the 401 (zoned light industrial); and
- R5: Residential subdivision north and east of the intersection of Baseline Road and Liberty Street South.

Two discrete receptors are also included for the two Durham-York Energy Centre (DYEC) ambient monitoring stations (Rundle Road and Courtice), located approximately 2.5km and 4.5km, respectively, west of the cement plant.

2.2 Compounds of Potential Concern (CoPCs) and Ambient Air Quality Criteria

For this Study, CoPCs are identified as total suspended particulate (PM), respirable particulate (PM $_{2.5}$); nitrogen dioxide (NO $_2$); sulphur dioxide (SO $_2$); hydrogen chloride (HCl) & chlorinated organics including dioxins and furans (D&Fs), non-chlorinated organics including polycyclic aromatic hydrocarbons (PAHs) and metals. These CoPCs were identified by the Ministry during the ECA application process and are conservatively based on the Ministry's experience with and requirements for a wide range of combustion/incineration activities.

The Ministry's Ambient Air Quality Criteria (AAQC) are used in this study as the reference levels for assessing ambient air quality in the community. AAQCs are described in the Ministry document "Ontario's Ambient Air Quality Criteria", dated December 2016. An AAQC is a desirable concentration of a contaminant in air, established to protect against adverse effects on health or the environment. AAQCs are commonly used in environmental assessments, special studies using ambient air monitoring data, assessments of general air quality in a community and annual reporting on air quality across the province. AAQCs are not regulatory standards for demonstrating environmental air compliance.

In the absence of provincial AAQCs for $PM_{2.5}$, the study used Canadian Ambient Air Quality Standards (CAAQS) as the reference levels. This is a very conservative approach because the study results (i.e. maximum concentrations plus background) are not developed to match the CAAQS basis. The CAAQS value for 24-hour $PM_{2.5}$ is based on a 3-year average of the annual 98^{th}

percentile of the daily 24-hour average concentrations. The CAAQS value for annual $PM_{2.5}$ is based on a 3-year average of the annual average concentrations.

In the absence of AAQCs and CAAQs, screening levels based on the Ministry's review of air quality values of other jurisdictions (JSLs) are used as reference levels. This is very conservative because the Ministry's JSLs are based generally on the lowest effect level identified from a review of all corresponding air quality values available in other jurisdictions.

2.2.1 Benzo(a)pyrene (BaP) AAQCs

As presented in Table 2-1, BaP has both a 24-hr ($0.00005~\mu g/m^3$) and annual ($0.00001~\mu g/m^3$) AAQC. It is relevant to note that these AAQCs were introduced by the Ministry as a surrogate to assess all PAHs as a group. These BaP criteria are very low and are more than 20 times lower than the previous AAQC for BaP as an individual PAH. It is also relevant to note that very small changes in BaP concentrations can result in significant relative changes when compared to these criteria.

Table 2-1: Summary of Applicable Air Quality Criteria and Standards

Contaminant Name	CAS#	Averaging Period	Air Criteria	Source of Air Criteria
	CAS II	Averaging renou	(μg/m³)	Source of All Citicita
PM Particulate	PM	24 hr	120	1 4400
PM PM	PM	Annual	120 60	AAQC AAQC
PM _{2.5}	PM2.5	24 hr	27	CAAQS
PM _{2.5}	PM2.5	Annual	8.8	CAAQS
Combustion Gases	10102-44-0	1 hr	400	AAQC
Nitrogen Dioxide Nitrogen Dioxide	10102-44-0	24 hr	200	AAQC
Sulphur Dioxide	7446-09-5	1 hr	690	AAQC
Sulphur Dioxide	7446-09-5	24 hr	275	AAQC
Sulphur Dioxide	7446-09-5	Annual	55	AAQC
Carbon Monoxide	630-08-0	1 hr	36200	AAQC
Carbon Monoxide	630-08-0	8 hr	15700	AAQC
Ammonia & Hydrochloric Acid		•		
Ammonia	7664-41-7	24 hr	100	AAQC
Hydrochloric Acid	7647-01-0	24 hr	20	AAQC
Metals & Metal Oxides				
Aluminum	7429-90-5	24 hr	12	SL-JSL
Antimony	7440-36-0	24 hr	25	AAQC
Arsenic	7440-38-2	24 hr	0.3	AAQC
Barium	7440-39-3	24 hr	10	AAQC
Beryllium	7440-41-7	24 hr	0.01	AAQC
Boron	7440-42-8	24 hr	120	AAQC
Cadmium	7440-43-9	24 hr Annual	0.025	AAQC
Calcium Oxide	7440-43-9 1305-78-8	24 hr	0.005	AAQC AAQC
Chromium	7440-47-3	24 hr	0.5	AAQC
Cobalt	7440-48-4	24 hr	0.1	AAQC
Copper	7440-50-8	24 hr	50	AAQC
Iron	7439-89-6	24 hr	4	Standard
Ferric Oxide	1309-37-1	24 hr	25	AAQC
Lead	7439-92-1	24 hr	0.5	AAQC
Lead	7439-92-1	30 day	0.2	AAQC
Magnesium	7439-95-4	24 hr	72	SL-MD
Manganese	7439-96-5	24 hr	0.4	AAQC
Manganese in PM ₁₀	7439-96-5	24 hr	0.2	AAQC
Manganese in PM _{2.5}	7439-96-5	24 hr	0.1	AAQC
Mercury	7439-97-6	24 hr	2	AAQC
Mercury (alkyl compounds)	7439-97-6	24 hr	0.5	AAQC
Molybdenum	7439-98-7	24 hr	120	AAQC
Nickel	7440-02-0	24 hr	0.2	AAQC
Nickel	7440-02-0	Annual	0.04	AAQC
Nickel in PM ₁₀	7440-02-0	24 hr	0.1	AAQC
Nickel in PM ₁₀	7440-02-0	Annual	0.02	AAQC
Phosphorus	7723-14-0	24 hr	0.5	SL-MD
Potassium	7440-09-7	24 hr	1	SL-JSL
Selenium	7782-49-2	24 hr	10	AAQC
Silver	7440-22-4	24 hr	1	AAQC
Strontium	7440-24-6	24 hr	120	AAQC
Thallium	7440-28-0	24 hr	0.5	SL-JSL
Tin	7440-31-5	24 hr	10	AAQC
Titanium	7440-32-6	24 hr	120	AAQC
Vanadium Zinc	7440-62-2 7440-66-6	24 hr 24 hr	2 120	AAQC AAQC
Volatile Organic Compounds	/440-00-0	24 NF	120	AAUL
Acetone (2-Propanone)	67-64-1	24 hr	11880	AAQC
Acrolein	107-02-8	24 hr	0.4	AAQC
Benzene	71-43-2	24 hr	2.3	AAQC
Benzene	71-43-2	Annual	0.45	AAQC
Bromodichloromethane	75-27-4	24 hr	350	SL-JSL
Bromoform	75-25-2	24 hr	55	AAQC
Bromomethane	74-83-9	24 hr	1350	AAQC
Methyl Ethyl Ketone (2-Butanone)	78-93-3	24 hr	1000	AAQC

Note: Using the CAAQS for $PM_{2.5}$ as reference levels for this study is conservative, because these criteria are based on the 98^{th} percentile, averaged over three years.

Table 2-1: Summary of Applicable Air Quality Criteria and Standards (continued)

Contaminant Name	CAS#	Averaging Period	Air Criteria (µg/m³)	Source of Air Criteria
Volatile Organic Compounds			(r-o/ ··· /	
Carbon Tetrachloride	56-23-5	24 hr	2.4	AAQC
Chlorobenzene	108-90-7	1 hr	3500	AAQC
Chlorobenzene	108-90-7	10 min	4500	AAQC
Chloroethane	75-00-3	24 hr	5600	AAQC
Chloroform	67-66-3	24 hr	1	AAQC
Chloroform	67-66-3	Annual	0.2	AAQC
Chloromethane	74-87-3	24 hr	320	AAQC
Cumene	98-82-8	24 hr	400	AAQC
Dibromochloromethane	124-48-1	24 hr	0.2	SL-JSL
1,1-Dichloroethane	75-34-3	24 hr	165	AAQC
1,2-Dichloroethane	107-06-2	24 hr	2	AAQC
1,2-Dichloroethane	107-06-2	Annual	0.4	AAQC
1,1-Dichloroethylene	75-35-4	24 hr	10	AAQC
cis-1,2-Dichloroethylene	156-59-2	24 hr	105	AAQC
trans-1,2-Dichloroethylene	156-60-5	24 hr	105	AAQC
1,2-Dichloropropane	78-87-5	24 hr	2400	AAQC
Ethylbenzene	100-41-4	10 min	1900	AAQC
Ethylbenzene	100-41-4	24 hr	1000	AAQC
Ethylene Dibromide	106-93-4	24 hr	3	AAQC
Methylene Chloride (Dichloromethane)	75-09-2	24 hr	220	AAQC
Methylene Chloride (Dichloromethane)	75-09-2	Annual	44	AAQC
Styrene	100-42-5	24 hr	400	AAQC
1,1,1,2-Tetrachloroethane	630-20-6	24 hr	0.5	SL-JSL
1,1,2,2-Tetrachloroethane	79-34-5	24 hr	0.1	SL-JSL
Tetrachloroethylene	127-18-4	24 hr	360	AAQC
Toluene	108-88-3	24 hr	2000	AAQC
1,1,1-Trichloroethane	71-55-6	24 hr	115000	AAQC
1,1,2-Trichloroethane	79-00-5	24 hr	0.3	SL-JSL
Trichloroethylene	79-01-6	24 hr	12	AAQC
Trichloroethylene	79-01-6	Annual	2.3	AAQC
Vinyl Chloride (1,1-dichloroethene)	75-01-4	24 hr	1	AAQC
Vinyl Chloride (1,1-dichloroethene)	75-01-4	Annual	0.2	AAQC
Xylenes	1330-20-7	10 min	3000	AAQC
Xylenes	1330-20-7	24 hr	730	AAQC
Total D&F				
Dioxins, Furans and Dioxin-like PCBs	CDD	24 hr	0.0000001	AAQC
Polycyclic Aromatic Hydrocarbons (PAH)				
Benzo(a)pyrene	50-32-8	24 hr	0.00005	AAQC
Benzo(a)pyrene	50-32-8	Annual	0.00001	AAQC
2-Chloronaphthalene	91-58-7	24 hr	1	SL-JSL
1-Methylnaphthalene	90-12-0		35.5	SL-JSL
Naphthalene	91-20-3	24 hr	22.5	AAQC
Naphthalene	91-20-3	10 min	50	AAQC
Tetralin	119-64-2	24 hr	151.5	SL-JSL
Chloronated Organics				
1,2-Dichlorobenzene	95-50-1	1 hr	30500	AAQC
1,3-Dichlorobenzene	541-73-1	24 hr	50	SL-JSL
1,4-Dichlorobenzene	106-46-7	24 hr	95	AAQC
1,2,3-Trichlorobenzene	87-61-6	24 hr	135	SL-JSL
1,2,4-Trichlorobenzene	120-82-1	24 hr	400	AAQC
1,3,5-Trichlorobenzene	108-70-3	24 hr	3.6	SL-JSL
1,2,3,4-Tetrachlorobenzene	634-66-2	24 hr	600	SL-JSL
1,2,3,5+1,2,4,5-Tetrachlorobenzene	634-90-2 / 95-94-3	24 hr	0.1	De Minimus
Pentachlorobenzene	608-93-5	24 hr	80	SL-JSL
Hexachlorobenzene	118-74-1	24 hr	0.011	SL-JSL
2,3-Dichlorophenol	576-24-9	24 hr	0.1	De Minimus
2,4 + 2,5-Dichlorophenol	120-83-2 / 583-78-8	24 hr	0.1	De Minimus
2,6-Dichlorophenol	87-65-0	24 hr	19	SL-JSL
2,3,4-Trichlorophenol	15950-66-0	24 hr	0.1	De Minimus
2,4,5-Trichlorophenol	95-95-4	24 hr	220	SL-JSL
2,4,6-Trichlorophenol	88-06-2	24 hr	1.5	SL-JSL
3,4,5-Trichlorophenol	609-19-8	24 hr	0.1	De Minimus
2,3,4,6-Tetrachlorophenol	58-90-2	24 hr	0.75	SL-JSL
2,3,5,6-Tetrachlorophenol	935-95-5	24 hr	0.1	De Minimus
Pentachlorophenol	87-86-5	24 hr	20	AAQC

3.0 AMBIENT BACKGROUND

As described in Section 1.3 of this Study, cumulative effects are considered by adding background concentrations of each CoPC obtained from local ambient monitoring stations. Data from these local stations is used to account for impacts of major local industrial sources, transportation, residential heating and long-range transport on existing local air quality.

BCX understands that a local major source (i.e. DYEC) is planning to implement a system optimization which will increase the annual processing capacity from 140,000 tonnes per year to 160,000 tonnes per year (TPA). Since the optimization may change the ambient background for the future scenario, impacts of this optimization have been considered in the future ambient background.

The general methodology for the cumulative effect assessment is described in the formulas below. The methodology for estimating the existing and future ambient background is further described in this section.

Existing Air Quality = Modelled Impacts from Existing SMC Bowmanville Facility Operations
+ Existing Ambient Background

Future Air Quality = Modelled Impacts from Future SMC Bowmanville Facility Operations +
Future Ambient Background

To be conservative, SMC's contribution is not subtracted from the ambient background data. Further, the existing and future ambient background concentrations are assumed to be constant. This assumption overestimates, in particular, the background for CoPCs with short-term averaging periods (e.g. PM_{2.5}, NO₂, SO₂, D&F, BaP, benzene, mercury and lead, etc.)

3.1 Existing Scenario

With respect to total suspended particulate (PM), fine particulate (PM_{2.5}), nitrogen dioxide (NO₂), sulphur dioxide (SO₂), metals, dioxins and furans (D&F) and BaP (surrogate for all PAHs), recent monitoring data (2017¹ and 2018) from the two nearby DYEC ambient stations (Rundle Road and Courtice Stations) are used to develop background levels for the existing scenario.

With respect to volatile organic compounds (VOCs), ambient monitoring data from SMC's 2018 demonstration project is used to develop the background concentrations for the existing scenario. Ambient monitoring for the SMC demonstration project took place between September and December 2018 at three locations (OPG, Cove and Beach). Wind roses of each station are

¹ DYEC's boilers were offline due to maintenance and repairs for approximately 40 days in 2017. This did not significantly change the ambient background levels.

reviewed and only data points that are true background (i.e. either upwind or downwind of the cement plant) or upwind samples were considered.

For the above CoPCs with an hourly or 24-hour criteria, the average of the 90th percentile of the data set for each station is used as the background concentrations. For the above CoPCs with an annual criterion, the average of each station's data set mean is used as the background concentrations.

With respect to carbon monoxide (CO), 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, hexachlorobenzene and pentachlorophenol, background concentrations for each contaminant are taken from the *Technical Memorandum – Air Quality Impact of 160,000 TPA Waste at the DYEC* (Golder Associates Limited).

3.2 Future Scenario

To evaluate DYEC's planned system optimization, Golder Associates Limited (Golder) completed a modelling assessment in February 19, 2019 to assess compliance with all applicable Point-Of-Impingement (POI) standards. The assessment lists the modelled maximum POI concentrations for both the current and optimization scenarios. The following approach was taken to conservatively calculate background for the future scenario of this Study:

If the modelled POI concentration for the DYEC optimization scenario > the current DYEC scenario:

Future Ambient Background = Existing Ambient Background +

(Maximum POI Concentration for DYEC Optimization – Maximum

POI Concentration for DYEC Current)

If the modelled POI concentration for the DYEC optimization scenario \leq the current DYEC scenario:

Future Ambient Background = Existing Ambient Background

MC Bowmanville Plant – ALCF Application

Table 3-1: Background Concentration Data

Continuin	CAS N-	90th Percentile		Average		1100/51105	Averaging	Standard/	% of /	AAQC
Contaminant	CAS No.	Existing	Future	Existing	Future	AAQC/ CAAQS	Period	Guideline	Existing	Future
Particulate										
PM	PM	-	-	3.50E+01	3.50E+01	60	Annual	AAQC	58.3%	58.3%
PM	PM	6.73E+01	6.73E+01	-	-	120	24 hr	AAQC	56.1%	56.1%
PM _{2.5}	PM2.5	-	-	6.34E+00	6.34E+00	8.8	Annual	CAAQS	72.1%	72.1%
PM _{2.5}	PM2.5	1.23E+01	1.23E+01	-	-	27	24 hr	CAAQS	45.5%	45.5%
Combustion Gases	1									
Nitrogen Dioxide	10102-44-0	2.01E+01	2.01E+01	-	-	200	24 hr	AAQC	10.0%	10.0%
Nitrogen Dioxide	10102-44-0	2.01E+01	2.17E+01	-	-	400	1 hr	AAQC	5.0%	5.4%
Sulphur Dioxide	7446-09-5	- 0.035+00	- 0.035+00	3.79E+00	3.79E+00	55	Annual	AAQC	6.9%	6.9%
Sulphur Dioxide	7446-09-5	8.82E+00	8.82E+00	-	-	275	24 hr	AAQC	3.2%	3.2%
Sulphur Dioxide Carbon Monoxide	7446-09-5 630-08-0	8.82E+00 1.27E+03	9.25E+00 1.27E+03	-	-	690 15700	1 hr 8 hr	AAQC AAQC	1.3% 8.1%	1.3% 8.1%
Carbon Monoxide	630-08-0	1.27E+03 1.27E+03	1.27E+03 1.27E+03	-		36200	1 hr	AAQC	3.5%	3.5%
Metals & Metal Oxides	030-08-0	1.275+03	1.27E+03	-	-	30200	1111	AAQC	3.5%	3.3%
Aluminum	7429-90-5	3.55E-01	3.55E-01	-	-	12	24 hr	SL-JSL	3.0%	3.0%
Antimony	7440-36-0	3.55E-03	3.55E-03	_	_	25	24 hr	AAQC	0.01%	0.01%
Arsenic	7440-38-2	2.12E-03	2.12E-03	-	-	0.3	24 hr	AAQC	0.7%	0.7%
Barium	7440-39-3	1.48E-02	1.48E-02	-	-	10	24 hr	AAQC	0.1%	0.1%
Beryllium	7440-41-7	3.55E-04	3.55E-04	-	-	0.01	24 hr	AAQC	3.6%	3.6%
Boron	7440-42-8	1.23E-02	1.23E-02	-	-	120	24 hr	AAQC	0.01%	0.01%
Cadmium	7440-43-9	-	-	6.83E-04	6.83E-04	0.005	Annual	AAQC	13.7%	13.7%
Cadmium	7440-43-9	7.08E-04	7.08E-04			0.005	24 hr	AAQC	14.2%	14.2%
Chromium	7440-47-3	5.80E-03	5.80E-03	-	-	0.5	24 hr	AAQC	1.2%	1.2%
Cobalt	7440-48-4	7.07E-04	7.07E-04	-	-	0.1	24 hr	AAQC	0.7%	0.7%
Copper	7440-50-8	6.10E-02	6.10E-02	-	-	50	24 hr	AAQC	0.1%	0.1%
Iron	7439-89-6	7.85E-01	7.85E-01	-	-	4	24 hr	Standard	19.6%	19.6%
Ferric Oxide	1309-37-1	2.25E+00	2.25E+00	-	-	25	24 hr	AAQC	9.0%	9.0%
Lead	7439-92-1	4.45E-03	4.45E-03	-	-	0.2	30 Day	AAQC	2.2%	2.2%
Lead	7439-92-1	4.45E-03	4.45E-03	-	-	0.5	24 hr	AAQC	0.9%	0.9%
Magnesium	7439-95-4	4.73E-01	4.73E-01	-	-	72	24 hr	SL-MD	0.7%	0.7%
Manganese	7439-96-5	2.44E-02	2.44E-02	-	-	0.4	24 hr	AAQC	6.1%	6.1%
Manganese in PM ₁₀	7439-96-5	2.44E-02	2.44E-02	-	-	0.2	24 hr	AAQC	12.2%	12.2%
Manganese in PM _{2.5}	7439-96-5	4.46E-03	4.46E-03	-	-	0.1	24 hr	AAQC	4.5%	4.5%
Mercury	7439-97-6	1.96E-05	1.96E-05	-	-	2	24 hr	AAQC	0.001%	0.001%
Mercury (alkyl compounds)	7439-97-6	1.96E-05	1.96E-05	-	-	0.5	24 hr	AAQC	0.004%	0.004%
Molybdenum	7439-98-7	3.01E-03	3.01E-03	-	-	120	24 hr	AAQC	0.003%	0.003%
Nickel	7440-02-0	-	-	1.18E-03	1.18E-03	0.04	Annual	AAQC	2.9%	2.9%
Nickel	7440-02-0	2.09E-03	2.09E-03	-	-	0.2	24 hr	AAQC	1.0%	1.0%
Nickel in PM ₁₀	7440-02-0	-	-	1.18E-03	1.18E-03	0.02	Annual	AAQC	5.9%	5.9%
Nickel in PM ₁₀	7440-02-0	2.09E-03	2.09E-03	-	-	0.1	24 hr	AAQC	2.1%	2.1%
Selenium	7782-49-2 7440-22-4	3.53E-03 1.77E-03	3.53E-03 1.77E-03	-	-	10 1	24 hr 24 hr	AAQC AAQC	0.04%	0.04%
Silver	7440-22-4	1.77E-03 1.69E-02	1.77E-03 1.69E-02	-	-	120	24 hr	AAQC	0.2% 0.01%	0.2% 0.01%
Strontium Thallium	7440-24-6	3.53E-03	3.53E-03	-	-	0.5	24 hr	SL-JSL	0.01%	0.7%
Tin	7440-28-0	3.54E-03	3.54E-03	-		10	24 hr	AAQC	0.04%	0.7%
Titanium	7440-32-6	1.81E-02	1.81E-02	-	-	120	24 hr	AAQC	0.02%	0.02%
Vanadium	7440-62-2	1.78E-03	1.78E-03	-	-	2	24 hr	AAQC	0.1%	0.1%
Zinc	7440-66-6	5.16E-02	5.16E-02	-	-	120	24 hr	AAQC	0.0%	0.0%
Volatile Organic Matter										
Acetone (2-Propanone)	67-64-1	6.50E+00	6.50E+00	-	-	11880	24 hr	AAQC	0.1%	0.1%
Benzene	71-43-2	-	-	4.84E-01	4.84E-01	0.45	Annual	AAQC	107.5%	107.5%
Benzene	71-43-2	6.27E-01	6.27E-01	-	-	2.3	24 hr	AAQC	27.3%	27.3%
Methyl Ethyl Ketone (2-Butanone)	78-93-3	8.96E-01	8.96E-01	-	-	1000	24 hr	AAQC	0.1%	0.1%
Carbon Tetrachloride	56-23-5	9.44E-01	9.44E-01	-	-	2.4	24 hr	AAQC	39.3%	39.3%
Chloromethane	74-87-3	1.16E+00	1.16E+00	-	-	320	24 hr	AAQC	0.4%	0.4%
1,2-Dichloroethane	107-06-2	-	-	9.05E-02	9.05E-02	0.4	Annual	AAQC	22.6%	22.6%
1,2-Dichloroethane	107-06-2	1.33E-01	1.33E-01	-	-	2	24 hr	AAQC	6.7%	6.7%
1,2-Dichloropropane	78-87-5	3.73E-01	3.73E-01	-	-	2400	24 hr	AAQC	0.02%	0.02%
Ethylbenzene	100-41-4	2.17E-01	2.17E-01	-	-	1000	24 hr	AAQC	0.02%	0.02%
Ethylbenzene		2.17E-01	2.17E-01	-	-	1900	10 Min	AAQC	0.01%	0.01% 1.1%
	100-41-4			F 00F 04	F 00F 04	4.4	Δ	^ ^ ^ ^ ^	4 407	1.1%
Methylene Chloride (Dichloromethane)	75-09-2	-	-	5.00E-01	5.00E-01	44 220	Annual 24 br	AAQC	1.1%	
Methylene Chloride (Dichloromethane)	75-09-2 75-09-2	- 6.70E-01	- 6.70E-01	5.00E-01 -	5.00E-01 -	220	24 hr	AAQC	0.3%	0.3%
Methylene Chloride (Dichloromethane) Toluene	75-09-2 75-09-2 108-88-3	- 6.70E-01 7.88E-01	- 6.70E-01 7.88E-01	-	-	220 2000	24 hr 24 hr	AAQC AAQC	0.3% 0.04%	0.3% 0.04%
Methylene Chloride (Dichloromethane) Toluene Xylenes	75-09-2 75-09-2	- 6.70E-01	- 6.70E-01	5.00E-01 - - -	5.00E-01 - - -	220	24 hr	AAQC	0.3%	0.3%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F	75-09-2 75-09-2 108-88-3 1330-20-7	- 6.70E-01 7.88E-01 2.60E+00	- 6.70E-01 7.88E-01 2.60E+00	-	-	220 2000	24 hr 24 hr	AAQC AAQC AAQC	0.3% 0.04% 0.4%	0.3% 0.04%
Methylene Chloride (Dichloromethane) Toluene Xylenes	75-09-2 75-09-2 108-88-3	- 6.70E-01 7.88E-01	- 6.70E-01 7.88E-01	-	-	220 2000 730	24 hr 24 hr 24 hr	AAQC AAQC	0.3% 0.04%	0.3% 0.04% 0.4%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs)	75-09-2 75-09-2 108-88-3 1330-20-7	- 6.70E-01 7.88E-01 2.60E+00	- 6.70E-01 7.88E-01 2.60E+00	-	-	220 2000 730 0.0000001	24 hr 24 hr 24 hr 24 hr	AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6%	0.3% 0.04% 0.4% 30.6%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs	75-09-2 75-09-2 108-88-3 1330-20-7	- 6.70E-01 7.88E-01 2.60E+00	- 6.70E-01 7.88E-01 2.60E+00	-	-	220 2000 730	24 hr 24 hr 24 hr	AAQC AAQC AAQC	0.3% 0.04% 0.4%	0.3% 0.04% 0.4%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08	-	-	220 2000 730 0.0000001	24 hr 24 hr 24 hr 24 hr Annual	AAQC AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6%	0.3% 0.04% 0.4% 30.6%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08	- - - 3.46E-05	- - - 3.46E-05	220 2000 730 0.0000001 0.00001 0.00005	24 hr 24 hr 24 hr 24 hr Annual 24 hr	AAQC AAQC AAQC AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6% 345.5% 134.9%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02	- - - 3.46E-05	- - - 3.46E-05	220 2000 730 0.0000001 0.00001 0.00005 35.5	24 hr 24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr	AAQC AAQC AAQC AAQC AAQC AAQC SL-JSL	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene Naphthalene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0 91-20-3	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02	- - - 3.46E-05	- - - 3.46E-05	220 2000 730 0.0000001 0.00005 35.5 22.5	24 hr 24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr 24 hr	AAQC AAQC AAQC AAQC AAQC AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene Naphthalene Naphthalene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0 91-20-3 91-20-3	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02	- - - 3.46E-05 - - -	3.46E-05	220 2000 730 0.0000001 0.00005 35.5 22.5 50	24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr 24 hr 20 hr	AAQC AAQC AAQC AAQC AAQC AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene Naphthalene Naphthalene Tetralin	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0 91-20-3 91-20-3	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02 2.80E-03	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02	- - - 3.46E-05 - - -	3.46E-05	220 2000 730 0.0000001 0.00005 35.5 22.5 50	24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr 24 hr 20 hr	AAQC AAQC AAQC AAQC AAQC AAQC AAQC AAQC	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene Naphthalene Naphthalene Tetralin Chloronated Organics	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0 91-20-3 91-20-3 119-64-2 95-50-1 120-82-1	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02 4.52E-02 2.80E-03 3.05E-02 5.00E-02	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02 4.52E-02 2.80E-03 3.05E-02 5.00E-02	3.46E-05 - - - - -	3.46E-05	220 2000 730 0.0000001 0.00005 35.5 22.5 50 151.5	24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr 24 hr 10 Min 24 hr 1 hr 24 hr	AAQC AAQC AAQC AAQC AAQC AAQC AAQC SL-JSL AAQC AAQC SL-JSL	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1% 0.0001% 0.0001%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.11% 0.002% 0.0001% 0.01%
Methylene Chloride (Dichloromethane) Toluene Xylenes Total D&F Dioxins, Furans and Dioxin-like PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a)pyrene Benzo(a)pyrene 1-Methylnaphthalene Naphthalene Naphthalene Tetralin Chloronated Organics 1,2-Dichlorobenzene	75-09-2 75-09-2 108-88-3 1330-20-7 CDD 50-32-8 50-32-8 90-12-0 91-20-3 91-20-3 119-64-2	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02 2.80E-03	- 6.70E-01 7.88E-01 2.60E+00 3.06E-08 - 6.74E-05 1.20E-02 4.52E-02 4.52E-02 2.80E-03	3.46E-05 - - - - - -	3.46E-05 - - - - -	220 2000 730 0.0000001 0.00005 35.5 22.5 50 151.5	24 hr 24 hr 24 hr 24 hr Annual 24 hr 24 hr 24 hr 24 hr 10 Min 24 hr	AAQC AAQC AAQC AAQC AAQC AAQC SL-JSL AAQC AAQC SL-JSL AAQC AAQC SL-JSL	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1% 0.0002%	0.3% 0.04% 0.4% 30.6% 345.5% 134.9% 0.03% 0.2% 0.1% 0.002%

Note: DYEC's boilers were offline due to maintenance and repairs for approximately 40 days in 2017. This did not significantly change the ambient background levels.

4.0 EMISSIONS SCENARIOS AND EMISSION ESTIMATION METHODOLOGY

4.1 Emission Scenarios

This air quality study assesses the following two scenarios:

Scenario #	Description
1	Existing Operations
2	Future Operations

4.1.1 Existing Operations

The existing operations are summarized in Table 4-1. These operations include stationary emission sources from the cement plant, limestone quarry, the dock operations and CBM aggregates operations. In addition, onsite road dust, tailpipe emissions and wind erosion from open stockpiles are also included.

The existing operations consider both conventional fuels only and LCF substitution. Emissions for operations associated with the delivery and use of LCFs for the Existing scenario are estimated based on an LCF delivery and consumption rate of 96 tonnes per day, 330 days per year (assuming 1-month shutdown).

All emission sources/operations are conservatively assumed to occur at their maximum achievable rates, all the time.

4.1.2 Future Operations

The future operations are summarized in Table 4-1. The same operations for the existing scenario are assumed to occur in the future scenario with the addition of ALCF delivery and substitution.

The emissions for operations associated with the delivery and use of ALCF as defined in Section 1.2 of this report are estimated based on an ALCF consumption rate of 400 tonnes per day, 330 days per year (assuming 1-month shutdown). While normal ALCF delivery will match consumption, the Study very conservatively assumes an ALCF delivery rate of 1200 tonnes per day to reflect the possibility that additional fuel may be required to be stockpiled prior to a three-day long weekend.

No changes to other operations are expected for the Future Scenario.

Table 4-1: Emission Sources and Scenario Assumption Summary

Activity	Contaminants**	Schedule	Existing Scenario Assumptions	Future Scenario Assumptions
,		Cement Pla		·
LCF/ALCF Delivery*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	100 tonnes/day (LCF)	1200 tonnes/day (ALCF)
Raw Material Delivery/Transfer*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year	Same as Existing
Kiln Stack	PM, PM _{2.5} , NO ₂ , SO ₂ , HCl, NH ₃ , metals, VOCs, PAHs, D&Fs, etc.	24 hours per day 7 days per week All year round	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year and an LCF consumption rate of 96 tonnes/day	Based on a maximum clinker production rate of 5500 tonnes/day and fuel consumption rate as described in Calculation Sheet 1B in Appendix D
Various Baghouses for Raw Material and Product Storage	PM, PM _{2.5}	24 hours per day 7 days per week All year round	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year	Same as Existing
Product Shipping*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year	Same as Existing
		Limestone Qu	arry	
Blasting	PM, PM _{2.5} , NO ₂ , SO ₂ , CO	12pm – 1pm 7 days per week	2 blasts per hour 2 blasts per day 100 blasts per year	Same as Existing
Drilling	PM, PM _{2.5} , NO ₂ , SO ₂ , CO	2 holes per hour 20 holes per day 5400 holes per year	2 holes per hour 20 holes per day 5400 holes per year	Same as Existing
Limestone Processing and Handling	PM, PM _{2.5}	24 hours per day 7 days per week 11 months per year	60000 tonnes/day blasted 1500 tonnes/day processed in the quarry	Same as Existing
Limestone Transfer to Cement Plant*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	8500 tonnes/day brought aboveground to be processed for Cement Plant	Same as Existing
		Dock Area	1	
Raw Material and Fuel Receiving at Dock*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year	Same as Existing
Raw Material and Fuel Transfer to Plant*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a maximum clinker production rate of 229 tonne/hr, 5500 tonnes/day and 1,815,000 tonne/year	Same as Existing

Table 4-1: Emission Sources and Scenario Assumption Summary (continued)

Activity	Contaminants**	Schedule	Existing Scenario Assumptions	Future Scenario Assumptions							
CBM Aggregates											
Aggregate Processing	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a processing rate of 65 tonnes/hr, 15000 tonnes/day and 450000 tonnes/year	Same as Existing							
Aggregate Transfer*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a processing rate of 65 tonnes/hr, 15000 tonnes/day and 450000 tonnes/year	Same as Existing							
Aggregate Shipping*	PM, PM _{2.5} , NO ₂ , SO ₂ , BaP, Benzene	24 hours per day 7 days per week 11 months per year	Based on a processing rate of 65 tonnes/hr, 15000 tonnes/day and 450000 tonnes/year	Same as Existing							

Note

^{*} Including mobile road dust and tailpipe emissions associated with these activities.

^{**} Although transportation is not a major source of SO₂, SO₂ emissions from onsite traffic have been included for the cumulative impact assessment due to major source onsite (Kiln stack) and offsite (DYEC).

4.2 Emission Estimation Methodologies

Potential air emissions are calculated using the practices set out in the Ministry's guidance documents under Reg. 419.

Emissions of CoPCs from the kiln stack are estimated using the 2018 Ministry approved source testing data which measured emissions from the use of conventional fuel only, LCF substitution and ALCF substitution. Emissions of CoPC from other sources such as the limestone quarry, road dust and baghouses are estimated using published emission factors (US Environmental Protection Agency and the Ministry), engineering estimates, mass balance, and manufacturer's performance specifications. With the exception of road dust, tailpipe and wind erosion, these methodologies have all been reviewed and approved by the Ministry as part of Facility's ECAs.

4.2.1 Emissions from the Kiln Stack

Existing Scenario

The average of the 2018 source testing results for baseline and for LCF substitution (96 tonnes per day) is assumed to be a representative realistic maximum emission rate for each contaminant from the kiln stack. Details of this methodology is presented in Appendix D.

Future Scenario

With respect to total suspended particulate, $PM_{2.5}$, NO_2 , SO_2 , NH_3 and CO, kiln stack emissions are dominated by conditions of the kiln system and associated air pollution control equipment. These conditions are not expected to change for the future scenario. The average of the 2018 source testing results for baseline, LCF substitution and alternative fuel substitution is assumed to be the representative realistic maximum kiln stack emission rate for these CoPCs.

With respect to all other CoPCs, emission factors (g/tonne of fuel input) are derived from the 2018 source testing results for baseline, LCF substitution and ALCF substitution. Since the 2018 ALCF demonstration source test allowed for the use of only 12 tonnes of ALCF per hour, emission rates for the future scenario are scaled up to account for the requested ALCF substitution rate (16 tonnes per hour) using the derived emission factors. This is expected to be very conservative because the source testing and associated modelling exercises to date indicate that there is no statistically significant change as a result of the use of LCF/ALCF and conventional fuels. Details of this methodology is presented in Appendix D.

It is important to note that, although the 2018 demonstration projects showed decreases in kiln stack emissions for more than 50% of the CoPCs when LCF/ALCF were used, no decrease in kiln stack emissions is assumed for the future scenario.

4.2.2 Emissions from Other Stationary Sources

Emissions from other onsite stationary sources including material delivery, transfers, and storage are calculated using published emission factors, engineering estimates and mass balance

estimates. These methods are used in the current ESDM reports supporting the Facility's ECAs.

4.2.3 Emissions from Wind Erosion

Emissions from wind erosion are calculated using the "fastest mile method" in US EPA AP-42, Section 13.2.4 Industrial Wind Erosion, November 2006. Details of this methodology is presented in Appendix D.

4.2.4 Road Dust Emissions from Vehicle Traveling on Unpaved Roads

Road dust emissions associated with vehicle travel on onsite unpaved roads are estimated using emission factors from US EPA AP-42 Section 13.2.2 Unpaved Roads, November 2006. Details of this methodology is presented in Appendix D.

4.2.5 Road Dust Emissions from Vehicle Traveling on Paved Roads

Road dust emissions associated with vehicle travel on paved roads are estimated using emission factors from US EPA AP-42 Section 13.2.1 Paved Roads, January 2011. Details of this methodology is presented in Appendix D.

4.2.6 Tailpipe Emissions from On-Road Vehicles

Tailpipe emissions including travelling exhaust, brake wear, tire wear and idling for on-road trucks associated with SMC's operations (raw material delivery and transfer trucks and cement shipping trucks) are obtained using US EPA's Motor Vehicle Simulator (MOVES 2014b). A summary of the MOVES input assumptions is presented in the table below. The tailpipe emission factors are presented in Appendix C. Details of tailpipe emission calculations are presented in Appendix D.

Parameter	Input Description
Scale/Geographic Bounds	Custom County Domain
Year	2019
Meteorological Data	Toronto Pearson International Airport
Vehicles	Short/Long-Haul Trucks
Fuel Type	Diesel
Road Type	Rural Unrestricted
Speed	< 2.5mph (idling), 7.5mph <= speed < 12.5mph (onsite travel)
Pollutants	PM ₁₀ (representing TSP), PM _{2.5} , NO ₂ , SO ₂ , Benzene, Benzo(a)pyrene

Note: Tailpipe emissions from transportation are not considered a significant source of SO_2 due to the stringent government sulphur limits on fuels. However, since there are major SO_2 sources (i.e., the cement kiln and the DYEC stacks), SO_2 emissions from onsite traffic were included in the study to assess cumulative effects.

4.2.7 Tailpipe Emissions for Non-Road Vehicles

The tailpipe emissions for non-road vehicles including quarry haul trucks and front-end loaders are considered for this study. Particulate, NO₂ and SO₂ emissions are estimated using US EPA tiered emission standards/factors from the document "Nonroad Compression-Ignition Engines: Exhaust Emission Standards", March 2016.

Emission standards/factors for benzene and BaP are not available and, therefore, emissions of benzene and BaP are estimated using speciation profiles from the MOVES document "Speciation Profiles and Toxic Emission Factors for Non-road Engines", November 2015. Specifically:

- Benzene emissions are calculated using the ratio of VOC/NMHC, applied to the non-methane hydrocarbons (NMHC) emission standard from the "Nonroad Compression-Ignition Engines: Exhaust Emission Standards" document; and
- BaP emissions are calculated using the ratio of BaP/PM, applied to the PM emission standard from the "Nonroad Compression-Ignition Engines: Exhaust Emission Standards" document.

Details of this methodology is presented in Appendix D.

5.0 AIR DISPERSION MODELLING

5.1 Model Selection and Use

Air dispersion modelling for this air quality study is undertaken using the Ministry's approved AERMOD model (version 16216r).

AERMOD is a Ministry approved steady-state Gaussian plume dispersion modelling system that can be used to assess pollutant concentrations from a wide variety of complex industrial settings including multiple stacks, fugitive emissions, building wake effects and roads. The AERMOD modelling system was developed by the AMS/EPA Regulatory Model Improvement Committee (AERMIC) and consists of two pre-processors (AERMET and AERMAP) and the dispersion model, AERMOD.

AERMET is a general-purpose meteorological pre-processor which uses surface and upper air meteorological conditions together with surface characteristics to calculate the boundary layer parameters needed by AERMOD. AERMAP is the terrain pre-processor used to calculate a representative terrain-influenced height associated with each receptor within the modelling domain.

The AERMOD model calculates maximum hourly concentrations using local meteorological data, which the model subsequently uses to predict off-site concentrations over other averaging periods such as 24-hour and annual.

5.2 General Settings

Dry and wet deposition, and dry and wet depletion of the plume have been disabled for AERMOD to produce the maximum ambient air concentration results.

5.3 Meteorology

The Ministry supplied site-specific meteorological data set used for the current ESDM report (2004-2008, AERMET Version 16216) is used for the modelling exercise.

5.4 Terrain

The terrain data used (cdem__030M in GeoTIFF format) Datum NAD83, UTM Zone 17, is downloaded from Ontario Digital Elevation Model Data on the Ministry's website.

5.5 Modelling Domain and Receptor Grid

The modeling domain is defined by a tiered receptor grid centred on the kiln stack and extending out approximately 5km in all directions. Grid spacing is determined according to the *Ministry Air Dispersion Modelling Guideline for Ontario (February 2017)*, (ADMGO).

In addition, a set of 128 discrete sensitive receptors are also included in the Study. These receptors represent the following five communities (see Figure 1-1):

- R1: Residential subdivision north of Baseline Road;
- R2: Residential community along Lake Ontario;
- R3: Agricultural farmhouses north of the 401 and south of Baseline Road;
- R4: Legal non-conforming home north of the plant and south of the 401 (zoned light industrial); and
- R5: Residential subdivision north and east of the intersection of Baseline Road and Liberty Street South.

Two discrete receptors are also included for the two Durham-York Energy Centre (DYEC) ambient monitoring stations (Rundle Road and Courtice), located approximately 2.5km and 4.5km, respectively, west of the cement plant.

5.6 Source Inputs

For this modelling assessment, point sources are used for primary stacks including the kiln stack. Volume sources were used for groups of baghouse dust collectors and fugitive emissions (e.g. material delivery, handling and storage). Line volume sources are used for onsite road dust and tailpipe emissions. Emissions from the limestone quarry below grade are modelled as two open pit sources, one for the material drop points and one for the remaining activities. The particle size distributions for the two open pit sources are provided in Appendix F.

5.7 Shoreline Effect Assessment

The Facility's kiln stack has a height of 105m above grade and is located within 600m from the shoreline of Lake Ontario. The temperature difference between water and land can result in reduced air dispersion. This shoreline effect is referred as shoreline fumigation in the ADMGO. As required by ADMGO, a shoreline effect screening assessment is completed for this source using the Screen3 model. The screening assessment concluded that the shoreline effects may occur. A shoreline effect assessment is, therefore, completed using the CALPUFF model (Version 7) to generate "shoreline effect factors" which are then incorporated in the AERMOD modelling input for the kiln stack to account for potential impact of shoreline effects. Details of the shoreline effect assessment is presented in Appendix E.

6.0 RESULTS

Through the public consultation process, the following contaminants are identified as being of particular concern (Key CoPCs):

Criteria Air Contaminants	Hydrochloric Acid (HCI) and Chlorinated Organics	Non-Chlorinated Organics and Metals			
 PM_{2.5} NO₂ SO₂ 	 HCl D&F and Dioxin-Like PCBs 1,1,2,2-Tetrachloroethane	BenzeneBaPMercuryLead			

This section provides results for the key CoPCs for the following assessments in the five communities in the vicinity of the Facility:

- (1) the assessment of cumulative effects, where modelling results are added to the ambient background where available and then compared to the applicable reference levels; and
- (2) the assessment of change in local air quality as a result of the use of ALCF.

The study takes a very conservative approach to provide the community with a high level of confidence in the study conclusions. This means that the predicted future air quality and change in air quality are over-estimated.

The maximum modelled concentrations in the five communities for the existing and future scenarios for all CoPCs are presented in Appendix G.

6.1 Assessment of Cumulative Effects

This section presents a summary of the air dispersion modelling results for each CoPC by averaging period. As discussed in Section 3.0, where applicable, ambient background concentrations are added to the predicted off-site air concentrations to determine overall local air quality impacts as a result of the use of ALCF.

The study results for the key CoPCs at offsite sensitive receptors representing the five closest communities (i.e. R1 to R5) for both the existing and future scenarios, are presented in Table 6-1.

All CoPCs are below their respective reference levels at all sensitive receptors in each of the five communities (i.e. R1 to R5), without background added.

With the exception of benzene (annual) and BaP (24 hour and annual), all CoPCs are below their respective AAQCs/reference levels at all sensitive receptors in each of the five communities, with background added (i.e. cumulative results).

With respect to benzene (annual) and BaP (24 hour and annual), the exceedance of their AAQCs is a result of elevated background concentrations. Background concentrations for benzene (annual criterion) and benzo(a)pyrene (24-hour and annual criteria) measured at the local ambient monitoring stations are similar to background concentrations measured across the province (i.e. it is not a localized phenomenon). Relative to background concentrations, the contribution from SMC is small.

6.2 Assessment of Change in Local Air Quality

This section presents a summary of the conservatively estimated change in cumulative concentrations for each CoPC by averaging period. As discussed in Sections 3 and 4, the Study purposefully does not permit a reduction in cumulative concentrations as a result of the use of ALCF, so as to provide a worst-case change.

The predicted change for the key CoPCs at offsite sensitive receptors representing five closest communities (i.e. R1 to R5) between the existing and future scenarios, are presented in Table 6-2.

As presented in the table, for the more densely populated communities (i.e. R1, R2, R5), the predicted worst-case change in cumulative air quality is less than 3% of the applicable ambient air quality criteria. For agricultural lands north of the 401 (i.e. R3), the predicted worst-case change in cumulative air quality is less than 4.5% of the applicable ambient air quality criteria. For the legal non-conforming home on light industrial lands south of the 401 (i.e. R4), the predicted worst-case change in cumulative air quality is less than 6% of the applicable ambient air quality criteria.

Table 6-1 Assessment of Cumulative Effects from the Use of ALCF in the Communities

		ماند میناند.	Da alamana d		R:	1	R	2	R	3	R4	4	R!	5
Contaminant	Averaging Period	Air Quality Criteria (μg/m³)	Background Concentration (µg/m³)	Background % of Criteria	Max. Concentration (μg/m³)	% of Criteria								
Criteria Air Contaminants														
PM _{2.5}	24 hr	27	12.3	45.5%	16.6	61.6%	19.2	70.9%	19.5	72.2%	20.8	76.9%	14.8	54.9%
PM _{2.5}	Annual	8.8	6.3	72.1%	6.6	74.5%	7.4	84.0%	6.9	78.2%	7.3	83.0%	6.5	73.8%
Nitrogen Dioxide	1 hr	400	21.7	5.4%	154.2	38.6%	119.6	29.9%	204.6	51.2%	205.4	51.4%	100.0	25.0%
Nitrogen Dioxide	24 hr	200	20.1	10.0%	53.7	26.8%	47.0	23.5%	76.3	38.2%	83.9	41.9%	30.5	15.2%
Sulphur Dioxide	1 hr	690	9.2	1.3%	230.7	33.4%	101.0	14.6%	295.2	42.8%	321.7	46.6%	141.8	20.5%
Sulphur Dioxide	24 hr	275	8.8	3.2%	59.2	21.5%	42.2	15.4%	92.6	33.7%	102.3	37.2%	18.7	6.8%
Sulphur Dioxide	Annual	55	3.8	6.9%	4.8	8.8%	7.5	13.7%	5.6	10.2%	5.5	10.0%	4.6	8.4%
Hydrochloric Acid (HCI) & Chlor	ronated Orga	nics												
Hydrochloric Acid	24 hr	20	-	-	0.7	3.4%	0.4	2.2%	1.1	5.6%	1.3	6.3%	0.1	0.7%
Dioxins, Furans and Dioxin-like PCBs	24 hr	0.0000001	0.00000003	30.6%	0.00000003	31.6%	0.00000003	31.2%	0.00000003	32.3%	0.00000003	32.5%	0.00000003	30.8%
1,1,2,2-Tetrachloroethane	24 hr	0.1	-	-	0.0001	0.09%	0.0001	0.06%	0.0001	0.14%	0.0002	0.16%	0.00002	0.02%
Non-Chloronated Organics & N	/letals													
Benzene	24 hr	2.30	0.6	27.3%	0.75	32.8%	0.71	30.9%	0.84	36.5%	0.86	37.5%	0.65	28.3%
Benzene	Annual	0.45	0.5	107.5%	0.486	108.0%	0.491	109.2%	0.488	108.5%	0.487	108.3%	0.486	107.9%
Benzo(a)pyrene	24 hr	0.00005	0.00007	134.9%	0.000077	154.2%	0.000079	158.0%	0.000084	167.6%	0.000088	176.3%	0.000072	143.5%
Benzo(a)pyrene	Annual	0.00001	0.00003	345.5%	0.00004	350.1%	0.00004	370.0%	0.00004	359.2%	0.00004	371.8%	0.00003	348.9%
Mercury	24 hr	0.50	0.00002	0.004%	0.0003	0.06%	0.0002	0.04%	0.0005	0.1%	0.0005	0.1%	0.0001	0.016%
Lead	24 hr	0.50	0.004	0.9%	0.005	1.0%	0.006	1.2%	0.006	1.2%	0.006	1.2%	0.005	1.0%
Lead	30 day	0.20	0.004	2.2%	0.005	2.4%	0.005	2.5%	0.005	2.5%	0.005	2.5%	0.005	2.3%

Table 6-2 Assessment of Change in Air Quality from the Use of ALCF in the Communities

			Existing	Future	Existing	Future	R1	R2	R3	R4	R5
Contaminant	Averaging Period	Air Quality Criteria (μg/m³)	Background Concentration (μg/m³)	Background Concentration (μg/m³)	Background % of Criteria	Background % of Criteria	Change in % of Criteria (Future - Existing)				
Criteria Air Contaminants											
PM _{2.5}	24 hr	27	12.3	12.3	45.5%	45.5%	0.2%	0.1%	0.1%	0.1%	0.1%
PM _{2.5}	Annual	8.8	6.3	6.3	72.1%	72.1%	0.01%	0.03%	0.04%	0.08%	0.01%
Nitrogen Dioxide	1 hr	400	20.1	21.7	5.0%	5.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Nitrogen Dioxide	24 hr	200	20.1	20.1	10.0%	10.0%	0.002%	0.035%	0.002%	0.026%	0.019%
Sulphur Dioxide	1 hr	690	8.8	9.2	1.3%	1.3%	2.3%	1.0%	3.0%	3.3%	1.4%
Sulphur Dioxide	24 hr	275	8.8	8.8	3.2%	3.2%	1.3%	0.8%	2.2%	2.4%	0.2%
Sulphur Dioxide	Annual	55	3.8	3.8	6.9%	6.9%	0.1%	0.4%	0.2%	0.2%	0.1%
Hydrochloric Acid (HCI) & Chlor	onated Orga	nics									
Hydrochloric Acid	24 hr	20	-	-	-	-	1.5%	1.0%	2.5%	2.8%	0.3%
Dioxins, Furans and Dioxin-like PCBs	24 hr	0.0000001	0.00000003	0.00000003	30.6%	30.6%	0.2%	0.1%	0.3%	0.4%	0.04%
1,1,2,2-Tetrachloroethane	24 hr	0.1	-	-	-	-	0.01%	0.01%	0.02%	0.02%	0.002%
Non-Chloronated Organics & N	letals										
Benzene	24 hr	2.30	0.6	0.6	27.3%	27.3%	1.4%	0.9%	2.4%	2.7%	0.3%
Benzene	Annual	0.45	0.5	0.5	107.5%	107.5%	0.1%	0.4%	0.3%	0.2%	0.1%
Benzo(a)pyrene	24 hr	0.00005	0.00007	0.00007	134.9%	134.9%	2.8%	1.1%	4.5%	5.8%	0.7%
Benzo(a)pyrene	Annual	0.00001	0.00003	0.00003	345.5%	345.5%	0.3%	1.0%	0.6%	1.0%	0.3%
Mercury	24 hr	0.50	0.00002	0.00002	0.004%	0.004%	0.03%	0.02%	0.05%	0.06%	0.01%
Lead	24 hr	0.50	0.004	0.004	0.9%	0.9%	0.03%	0.002%	0.08%	0.09%	0.002%
Lead	30 day	0.20	0.004	0.004	2.2%	2.2%	0.03%	0.002%	0.08%	0.08%	0.002%

7.0 ODOURS

There will be no odours in the community from the use of ALCF because the ALCF will not contain putrescible materials and the delivery, storage and transfer of the ALCF will be entirely enclosed.

8.0 CONCLUSIONS

No significant cumulative local air quality impacts in the community are expected as a result of the proposed future use of ALCF. This is because using very conservative assumptions and conservative local background levels for this Study, all CoPCs are below their respective reference levels at all sensitive receptors in each of the five communities except for benzene (annual) and BaP (24 hour and annual). With respect to these two CoPCs, the background levels locally and across the province are well above their respective ambient air quality criteria. The contribution from the plant to the cumulative concentrations for these two CoPCs are small and on their own are well below the AAQCs.

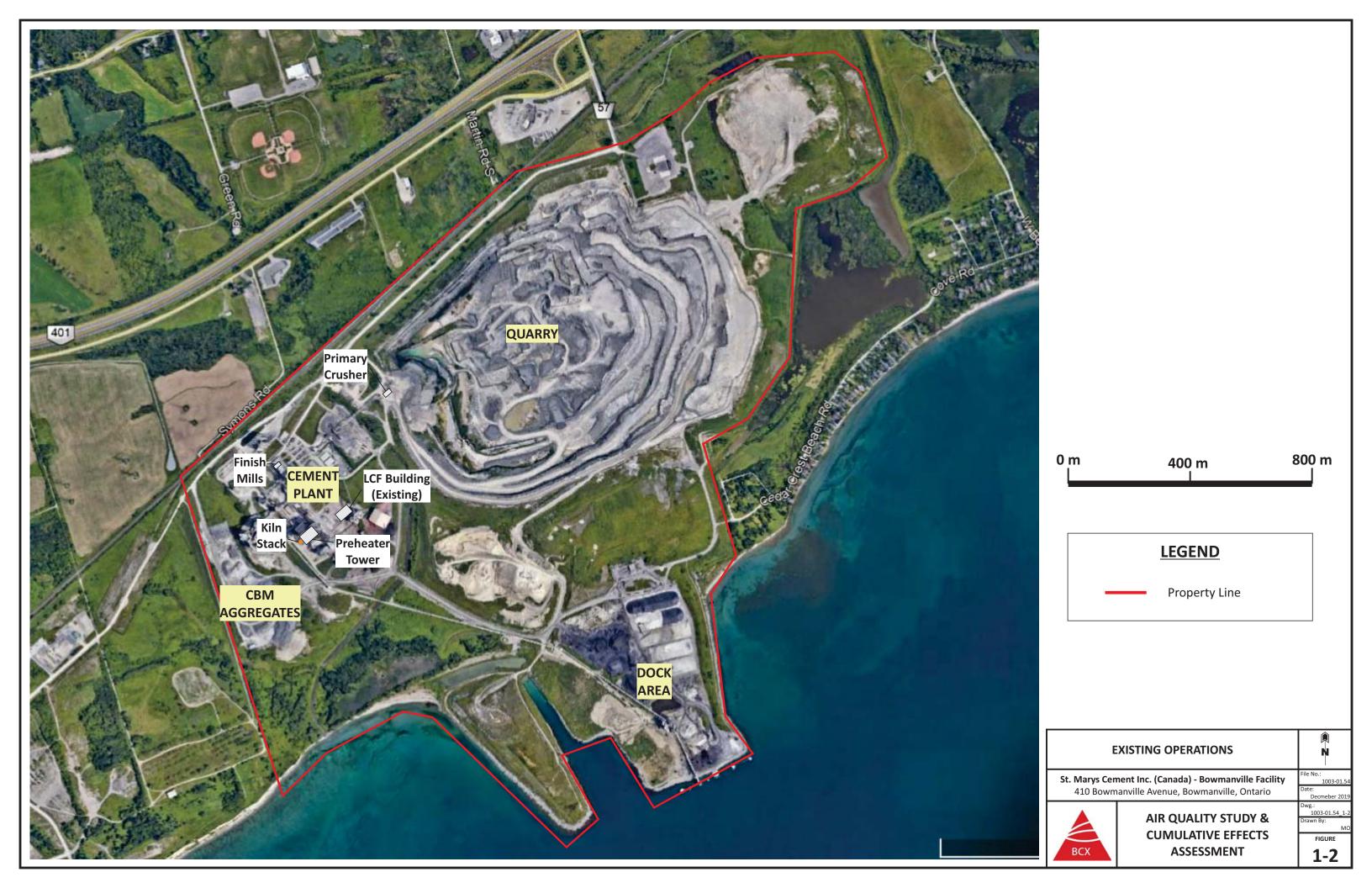
No significant change in local air quality in the community is expected as a result of the use of ALCF. This is because the predicted change in cumulative impacts is very small, even when the study purposefully over-estimates the emissions associated with the future use of ALCF.

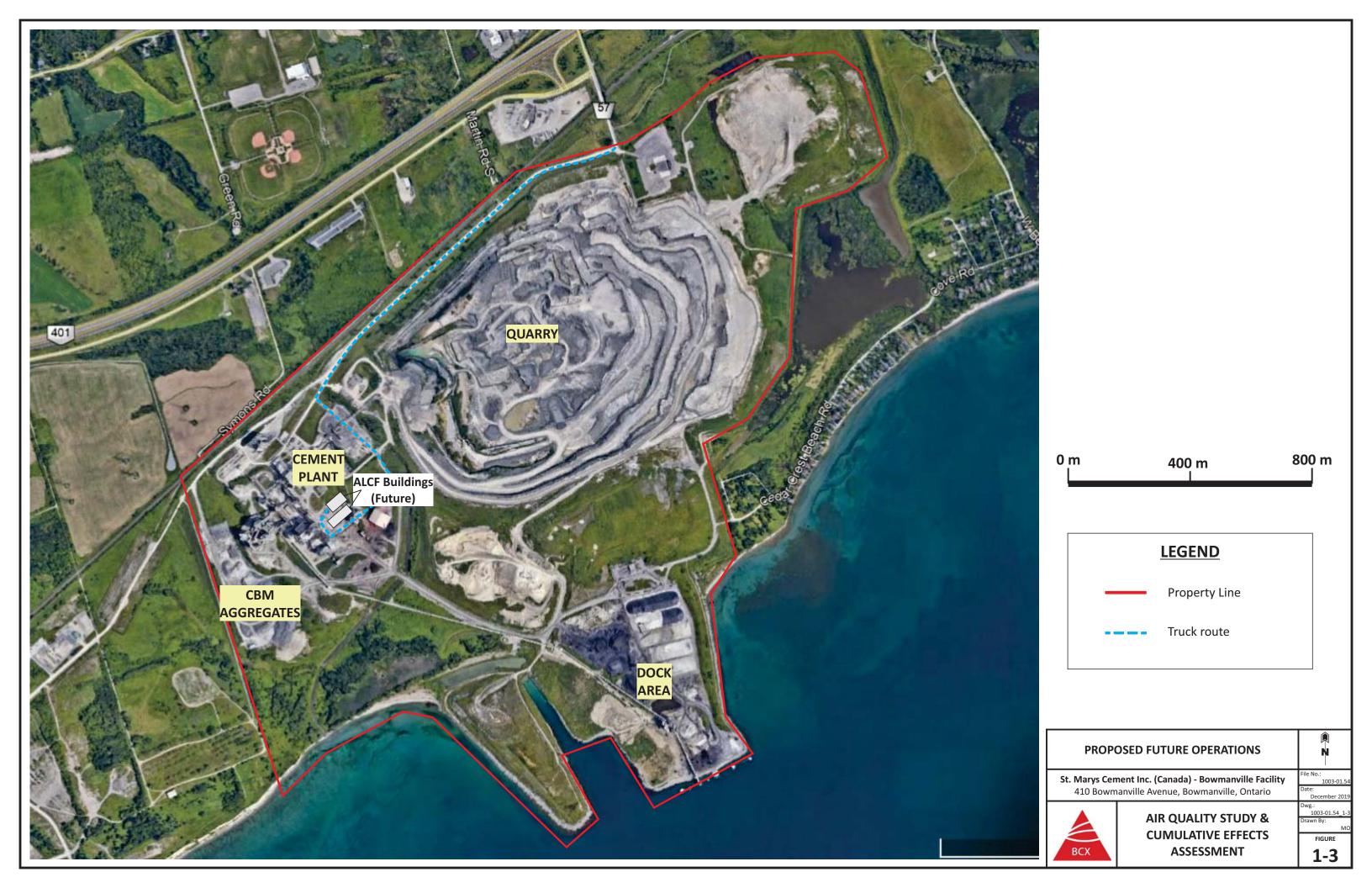
These conclusions are consistent with the "Alternative Fuel Demonstration Project Summary Report", prepared by BCX, dated May 2019.

9.0 REFERENCES

BCX File: 1003-01.54


- BCX Environmental Consulting. "Alternative Fuel Demonstration Project Summary Report." May 2019.
- Canadian Council of Ministers of the Environment (CCME). "Canadian Ambient Air Quality Standards (CAAQs)." February 2017.
- Golder Associates Limited. "Technical Memorandum Air Quality Impact of 160,000 TPA Waste at Durham York Energy Centre." February 19, 2019.
- HDR Inc. (HDR). "Alternative Fuel Demonstration Project Summary Waste Report." May 2019.
- Ministry of the Environment, Conservation and Parks (Ministry). "Air Dispersion Modelling Guideline for Ontario, Version 3.0." February 2017.
- Ministry of the Environment, Conservation and Parks (Ministry). "Ontario's Ambient Air Quality Criteria." December 2016.
- Ministry of the Environment, Conservation and Parks (Ministry). "Procedure for Preparing an Emission Summary and Dispersion Modelling Report, Version 4.1." March 2018.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Appendix A, Miscellaneous Data & Conversion Factors." September 1985.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Chapter 11.19.2, Crushed Stone and Pulverized Mineral Processing." August 2004.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Chapter 13.2.1, Paved Roads." January 2011.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Chapter 13.2.2, Unpaved Roads." November 2006.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Chapter 13.2.4, Aggregate Handling and Storage Piles." November 2006.
- U.S. EPA. "Compilation of Air Pollutant Emission Factors (AP-42) Volume I: Chapter 3.3, Gasoline and Diesel Industrial Engines." October 1996.
- U.S. EPA. "MOVES2014a User Guide." November 2015.
- U.S. EPA. "Speciation Profiles and Toxic Emission Factors for Non-road Engines." 2015.
- Jacques-Whiteford, "Air Quality Assessment Technical Study Report, Durham York Residual Waste Study." December 4, 2009.




Appendix A

Figures

Appendix B

Detailed Assumptions of Modelling Scenarios

Input Sheet

Delivery Rates										
Average Rates	Source ID	Material Rates (tonnes)								
Average Nates	30urce ID	1 hr	24 hr	Annual						
Cement Plant										
FEL delivery of Slag to Hopper	SGHOPPER-1	10	250	75020						
FEL delivery of Gypsum to Hopper	SGHOPPER-2	10	250	75020						
Delivery of Fuel to Fuel Hopper	FUELH-1	30	550	178600						
Delivery of Ash to Stockpile	RAWPILES-1A	40	40	8930						
Delivery of Sand to Stockpile	RAWPILES-2A	40 80		20850						
Delivery of Iron to Stockpile	RAWPILES-3A	40	200	59550						
Transfer to Raw Material Hopper	RAWSILO-10	20	75	20850						
Delivery of Overburden to Stockpile	n/a	20	375	119100						
Delivery of Gypsum/CKD to Stockpile	n/a	10	250	75020						
Delivery of LCF (Existing) to ALCF Building	ALCF-1	20	100	33000						
Delivery of ALCF (Future) to ALCF Building	ALCF-2	60	1200	132000						
Material (Muck) Loading into Primary Crusher	QUARRY-3, PCRUSH-1	400	8500	2784400						
Crushed Limestone from Crusher to Primary Stockpile	PPILE1A	300	7000	2310000						
Cement Production	n/a	200	4000	1320000						

Cargo Dockers Activities								
Activity	Source ID	Material Rates (tonnes)						
Activity	Source ID	1 hr	24 hr	Annual				
Cargo Dockers - Transfer to Temporary Pile from Ship	CD-1A	40	250	75020				
Cargo Dockers - Transfer to Shipping Truck	CD-4	40	250	75020				

Quarry Activities							
Activity	Source ID	1 hr	24 hr	Annual			
Number of Blasts		2	2	100			
Amount Blasted (tonnes)		60000	60000	3037550			
Average Bench Height	QUARRY-1	13.5					
Rock Density (tonnes/m³)			2.7				
Mass of ANFO used (tonnes)		11	11	550			
Drilling Rate (holes)	QUARRY-2	2	20	5400			

СВМ							
Activity	Source ID	Material Rates (tonnes)					
Activity	30urce ID	1 hr	24 hr	Annual			
Delivery of HL6 to CBM stockpiling area	CBM-2	80	100	25000			
Delivery of 50mm (run) to CBM	CBM-3	40	500	150000			
stockpiling area	CDIVI-3	40	300	150000			
Delivery of 50mm (clear) to CBM	CBM-4	40	100	10000			
stockpiling area	CBIVI-4	40	100	10000			
Primary Crusher (Quarry)	QUARRY-4	65	1500	450000			
Secondary Crusher (Quarry)	QUARRY-7	65	1500	450000			
Quarry Drops	QUARRY-8	65	1500	450000			
Shipment of materials offsite (CBM)	CBM-6	0	0	450000			

Truck Trips	Source ID		Trip Distance - One	Number of Trucks / Trips			Empty Truck Weight	Load Weight	Loaded Truck Weight	Road Type
Truck Hips	Road Dust	Tailpipe	- Way (km)	1 hr	24 hr	Annual	(tonnes)	(tonnes)	(tonnes)	Koau Type
Cement Plant										
FEL feeding the raw material feed hopper	RAWSILO-10	RAWSILO-11	0.05	4	8	2085	17	10	27	Paved
FEL operating in CBM area	CBM-7	CBM-8	0.12	16	70	45000	17	10	27	Unpaved
FEL loading Haul Truck	QUARRY-10	QUARRY-11	0.12	40	850	278440	17	10	27	Unpaved
Cargo Dockers										
FEL moving materials	CD-2	CD-3	0.95	4	25	7502	17	10	27	Unpaved
Material Delivery and Shipping										
Iron & Sand Delivery - Paved Roads	R1-1	T1-1	1.74	1	10	2978	19	40	59	Paved
CBM Materials Shipping - Paved Roads	R1-2	T1-2	1.74	0	0	11250	19	40	59	Paved
Iron & Sand Delivery - Unpaved Roads	R2	T2	1.20	1	10	2978	19	40	59	Unpaved
CBM Materials Shipping - Unpaved Roads	R3	T3	1.28	0	0	11250	39.3	50	89.3	Unpaved
Ash Delivery - Paved Roads	R4-1	T4-1	1.28	1	1	224	19	40	59	Paved
LCF Delivery - Paved Roads (Existing)	R4-2	T4-2	1.28	1	5	1650	19	20	39	Paved
ALCF Delivery - Paved Roads (Future)	R4-3	T4-3	1.28	3	60	6600	19	20	39	Paved
Ash Delivery - Unpaved Roads	R5	T5	0.86	1	1	224	19	40	59	Unpaved
LCF Delivery - Unpaved Roads (Existing)	R6-1	T6-1	0.65	1	5	1650	19	20	39	Unpaved
ALCF Delivery - Unpaved Roads (Future)	R6-2	T6-2	0.65	3	60	6600	19	20	39	Unpaved
Overburden Delivery - Unpaved Roads	R7	T7	3.12	1	8	2382	39.3	50	89.3	Unpaved
Haul Truck to Primary Crusher - Unpaved Roads	R8	Т8	1.77	8	170	55688	39.3	50	89.3	Unpaved
Fuel Delivery - Unpaved Roads	R9	Т9	0.82	1	14	4465	19	40	59	Unpaved
CKD/Gypsum Delivery - Unpaved Roads	R10	T10	0.79	8	175	57750	19	40	59	Unpaved
Finished Cement Shipping - Paved Roads	R11	T11	1.66	8	175	57750	19	40	59	Unpaved

Appendix C

MOVES Emission Factors

MOVES Emission Factors

Year	Vehicle Type	Source Type ID	Contaminant	CAS Number	ldle (g/VMT)	Travel Onsite (g/VMT)
2019	Aggregate/Limestone truck	53	PM_{10}^{-1}	PM	3.75E+00	9.49E-01
2019	Aggregate/Limestone truck	53	PM _{2.5}	PM2.5	1.86E+00	3.39E-01
2019	Aggregate/Limestone truck	53	NO ₂	10102-44-0	3.59E+01	5.99E+00
2019	Aggregate/Limestone truck	53	SO ₂	7446-09-5	1.25E-01	2.26E-02
2019	Aggregate/Limestone truck	53	Benzene	71-43-2	6.80E-02	1.16E-02
2019	Aggregate/Limestone truck	53	Benzo(a)pyrene	50-32-8	3.00E-04	4.49E-05
2019	Aggregate/Limestone truck	53	СО	630-08-0	2.19E+01	5.03E+00

Notes:

^{1.} It is assumed that total suspended particulate (PM) is equivalent to ${\rm PM}_{10}.$

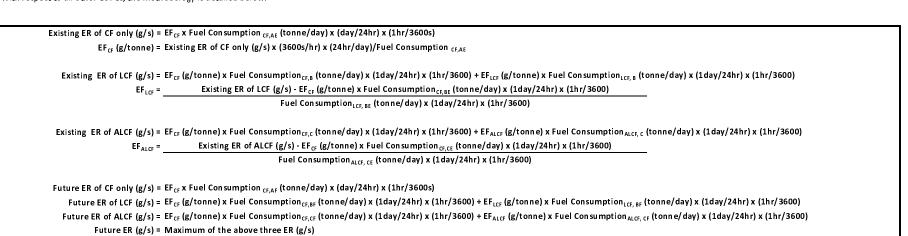
Appendix D

Key Emission Calculation Sheets

Calculation Sheet 1A - Kiln Stack Emissions - Existing

With respect to the kiln stack emissions for the existing scenario, the average of the 2019 source testing results for baseline, low carbon fuel substitution (96 tonne of woody material/day) and post baseline was assumed as the representative realistic maximum emission rate for each contaminant.

			Emission Rat	te (g/s)		Emission	
Contaminant	CAS Number	Conventional Fuel (Oct 2018)	Low Carbon Fuel (Dec 2018)	Post Baseline (Dec 2018)	Average	Emission Technique	Data Quality
Particulate PM	PM	2.02E+00	1.22E+00	4.12E+00	2.45E+00	V-ST	Above-Average
PM2.5 Combustion Gases	PM2.5	1.84E-01	2.12E-01	1.75 E-01	1.90E-01	V-ST	Above-Average
NO ₂	10102-44-0	8.94E+01	9.36E+01	9.73E+01	9.34E+01	V-ST	Above-Average
SO ₂ CO	7446-09-5 630-08-0	1.37E+02 1.19E+02	1.42E+02 N.D.	1.14E+02 7.49E+01	1.31E+02 9.67E+01	V-ST V-ST	Above-Average Above-Average
Ammonia & Hydrochloric Acid	030-08-0	1.132+02	N.D.	7.432+01	3.07L+01	V-31	_
Ammonia Hydrochloric Acid	7664-41-7 7647-01-0	5.95E+00 1.45E+00	5.30E+00 1.10E+00	4.06 E+00 6.03 E-01	5.10E+00 1.05E+00	V-ST V-ST	Above-Average Above-Average
Metals & Metal Oxides							Above-Average
Aluminum Antimony	7429-90-5 7440-36-0	6.07E-02 < 4.36E-04	3.14E-02 < 5.38E-04	1.47E-02 < 5.26E-04	3.56E-02 5.00E-04	V-ST V-ST	Above-Average Above-Average
Arsenic	7440-38-2	< 1.39E-04	< 1.44E-04	< 1.40E-04	1.41E-04	V-ST	Above Average
Barium Beryllium	7440-39-3 7440-41-7	1.78E-03 < 2.62E-05	1.31E-03 < 3.23E-05	1.67E-03 < 3.16E-05	1.59E-03 3.00E-05	V-ST V-ST	Above-Average Above-Average
Boron	7440-41-7	< 5.30E-03	< 5.38E-03	< 5.26 E-03	5.31E-03	V-ST	Above-Average
Cad mi um	7440-43-9 1305-78-8	3.15E-05	< 3.32 E-05	< 3.20E-05	3.22E-05 5.04E-01	V-ST	Above-Average
Calcium Oxide Chromium	7440-47-3	9.69E-01 < 5.30E-04	4.27E-01 < 5.38E-04	1.16 E-01 < 5.30 E-04	5.33E-04	V-ST V-ST	Above-Average Above-Average
Cobalt	7440-48-4	< 2.03E-04	< 3.58E-05	< 3.00E-05	8.96E-05	V-ST	Above-Average
Copper Iron	7440-50-8 7439-89-6	3.27E-04 4.56E-02	< 3.06E-04 2.59E-02	< 2.67E-04 1.69E-02	3.00E-04 2.95E-02	V-ST V-ST	Above-Average Above-Average
Ferric Oxide	1309-37-1	1.30E-01	7.41E-02	4.83 E-02	8.43E-02	V-ST	Above-Average
Lead Magnesium	7439-92-1 7439-95-4	1.19E-03 3.01E-02	8.32E-04 1.30E-02	1.80E-04 1.09E-02	7.34E-04 1.80E-02	V-ST V-ST	Above-Average Above-Average
Manganese	7439-96-5	1.71E-03	8.02 E-04	5.50E-04	1.02E-03	V-ST	Above-Average
Mercury Molybdenum	7439-97-6 7439-98-7	4.03E-04 8.93E-04	3.82E-04 8.71E-04	< 1.73 E-04 1.03 E-03	3.19E-04 9.31E-04	V-ST V-ST	Above-Average Above-Average
Nickel	7440-02-0	5.18E-04	7.92 E-04	3.21E-04	5.44E-04	V-ST	Above-Average
Phosphorus Potassium	7723-14-0 7440-09-7	< 1.34E-02 1.07E-01	< 1.65E-02 6.84E-02	< 1.61E-02 < 2.10E-02	1.53E-02 6.55E-02	V-ST V-ST	Above-Average Above-Average
Selenium	7782-49-2	< 2.91E-04	< 3.59E-04	< 3.51E-04	3.34E-04	V-ST	Above-Average
Silver Strontium	7440-22-4 7440-24-6	< 3.60E-04 1.39E-03	< 4.31E-05 6.63E-04	< 5.00E-05 2.20E-04	1.51E-04 7.58E-04	V-ST V-ST	Above-Average Above-Average
Thallium	7440-28-0	< 4.12 E-05	< 4.31E-05	< 4.20E-05	4.21E-05	V-ST	Above-Average
Tin Titanium	7440-31-5 7440-32-6	8.41 E-03 3.68 E-03	6.93E-03 2.25E-03	2.90E-03 1.51E-03	6.08E-03 2.48E-03	V-ST V-ST	Above-Average Above-Average
Va nadium	7440-62-2	< 1.02E-04	< 1.08E-04	< 1.05 E-04	1.05E-04	V-ST	Above-Average
Zinc Volatile Organic Compounds	7440-66-6	< 2.64E-03	< 1.98E-03	< 1.75 E-03	2.12E-03	V-ST	Above-Average
Acetone (2-Propanone)	67-64-1	9.82 E-02	8.18E-02	8.06 E-02	8.69E-02	V-ST	Above-Average
Acrolein Benzene	107-02-8 71-43-2	1.80E-02 2.44E-01	1.72 E-02 2.68 E-01	N.D. 2.77E-01	1.76E-02 2.63E-01	V-ST V-ST	Above-Average Above-Average
Bromodichloromethane	75-27-4	< 1.66E-04	< 1.59E-04	< 1.57E-04	1.61E-04	V-ST	Above-Average
Bromoform Bromomethane	75-25-2 74-83-9	< 2.11E-04 < 4.10E-03	< 2.02 E-04 < 4.62 E-03	< 2.00E-04 < 6.76E-03	2.04E-04 5.16E-03	V-ST V-ST	Above-Average Above-Average
Methyl Ethyl Ketone (2-Butanone)	78-93-3	< 5.43 E-04	< 5.19E-04	< 5.14E-04	5.25E-04	V-ST	Above-Average
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	< 2.41E-04 5.60E-03	< 2.31E-04 8.18E-03	< 2.28E-04 < 5.21E-03	2.33E-04 6.33E-03	V-ST V-ST	Above-Average Above-Average
Chloroethane	75-00-3	8.22 E-03	7.03 E-03	8.90E-03	8.05E-03	V-ST	Above-Average
Chloroform Chloromethane	67-66-3 74-87-3	< 1.66 E-04 7.31 E-02	< 1.59E-04 6.77E-02	< 1.57E-04 1.02E-01	1.61E-04 8.09E-02	V-ST V-ST	Above-Average Above-Average
Cumene	98-82-8	< 6.41E-02	< 1.03 E-02	< 1.43 E-02	2.96E-02	V-ST	Above-Average
Dibromochloromethane 1,1-Dichloroethane	124-48-1 75-34-3	< 1.36 E-04 < 1.81 E-04	< 1.30E-04 < 1.73E-04	< 1.28E-04 < 1.71E-04	1.31E-04 1.75E-04	V-ST V-ST	Above-Average Above-Average
1,1-Dichloroethane	107-06-2	< 1.81E-04 < 1.06E-04	< 1.73E-04 < 1.01E-04	< 1.71E-04 < 1.00E-04	1.73E-04 1.02E-04	V-ST	Above-Average Above-Average
1,1-Dichloroethylene cis-1,2-Dichloroethylene	75-35-4 156-59-2	< 1.66 E-04 < 1.51 E-04	< 1.59E-04 0.00E+00	< 1.57E-04 < 1.43E-04	1.61E-04 9.80E-05	V-ST V-ST	Above-Average Above-Average
trans-1,2-Dichloroethylene	156-60-5	< 1.51E-04	< 1.44E-04	< 1.43E-04	1.46E-04	V-ST	Above-Average Above-Average
1, 2 - Dichloro propane Ethylbenzene	78-87-5 100-41-4	< 1.66 E-04 3.23 E-02	< 1.59E-04 3.82E-02	< 1.57E-04 3.98E-02	1.61E-04 3.68E-02	V-ST V-ST	Above-Average Above-Average
Ethylene Dibromide	106-93-4	< 1.51E-04	< 1.44E-04	< 1.43E-04	1.46E-04	V-ST	Above-Average Above-Average
Methylene Chloride(Dichloromethane)	75-09-2	< 2.87E-04	< 2.74E-04	< 2.71E-04	2.77E-04	V-ST	Above-Average
Styrene 1,1,1,2-Tetrachloroethane	100-42-5 630-20-6	3.42 E-02 < 1.51 E-04	4.69E-02 < 1.44E-04	3.97E-02 < 1.43E-04	4.03E-02 1.46E-04	V-ST V-ST	Above-Average Above-Average
1,1,2,2-Tetrachloroethane	79-34-5	< 2.11E-04	< 2.02E-04	< 2.00E-04	2.04E-04	V-ST	Above-Average
Tetrachloroethylene Toluene	127-18-4 108-88-3	< 2.72 E-04 1.40 E-01	< 2.59E-04 1.54E-01	< 2.57E-04 2.08E-01	2.63E-04 1.67E-01	V-ST V-ST	Above-Average Above-Average
1,1,1-Trichloroethane	71-55-6	< 2.11E-04	< 2.02E-04	< 2.00E-04	2.04E-04	V-ST	Above-Average
1,1,2-Trichloroethane Trichloroethylene	79-00-5 79-01-6	< 2.41E-04 < 1.66E-04	< 2.31E-04 < 1.59E-04	< 2.28E-04 < 1.57E-04	2.33E-04 1.61E-04	V-ST V-ST	Above-Average Above-Average
Vinyl Chloride	75-01-4	< 1.96E-04	< 5.79E-04	< 1.85E-04	3.20E-04	V-ST	Above-Average
Xylene Total D&F	1330-20-7	1.71E-01	2.04E-01	2.58E-01	2.11E-01	V-ST	Above-Average
Dioxins, Furans and Dioxin-like PCBs	CDD	2.74E-09	2.33E-09	1.93E-09	2.33E-09	V-ST	Above-Average
Polycyclic Aromatic Hydrocarbons (PAHs) Benzo(a) pyrene	50-32-8	< 2.18E-05	< 2.14E-05	< 2.17E-05	2.16E-05	V-ST	Above-Average
2-Chloronaphthalene	91-58-7	3.94E-04	5.51E-04	3.65 E-04	4.37E-04	V-ST	Above-Average
1-Methylnaphthalene Naphthalene	90-12-0 91-20-3	2.27E-02 < 5.42E-02	2.66E-02 < 5.72E-02	2.14E-02 4.75E-02	2.36E-02 5.30E-02	V-ST V-ST	Above-Average Above-Average
Tetralin	119-64-2	< 1.41E-02	< 1.23 E-02	1.19 E-02	1.28E-02	V-ST	Above-Average
Chloronated Organics 1,2-Dichlorobenzene	95-50-1	< 4.99E-04	4.46 E-04	5.00E-04	4.82E-04	V-ST	Above-Average
1,3-Dichlorobenzene	541-73-1	1.54E-04	< 2.12E-04	2.54E-04	2.07E-04	V-ST	Above-Average
1,4-Dichlorobenzene 1,2,3-Trichlorobenzene	106-46-7 87-61-6	1.19E-04 1.31E-04	< 1.87E-04 < 1.49E-04	2.69E-04 1.94E-04	1.92E-04 1.58E-04	V-ST V-ST	Above-Average Above-Average
1,2,4-Trichlorobenzene	120-82-1	< 1.14E-04	1.53E-04	1.82 E-04	1.50E-04	V-ST	Above-Average
1,3,5-Trichlorobenzene 1,2,3,4-Tetrachlorobenzene	108-70-3 634-66-2	< 2.39 E-05 < 2.18 E-05	< 2.14E-05 2.14E-05	< 2.17E-05 < 2.17E-05	2.23E-05 2.16E-05	V-ST V-ST	Above-Average Above-Average
1,2,3,5+1,2,4,5-Tetrachlorobenzene	634-90-2 / 95-94-3	< 2.18E-05	2.14E-05	< 2.17E-05	2.16E-05	V-ST	Above-Average
Pentachlorobenzene Hexachlorobenzene	608-93-5 118-74-1	< 2.18E-05 2.18E-05	< 2.14E-05 < 2.14E-05	2.20E-05 < 2.17E-05	2.17E-05 2.16E-05	V-ST V-ST	Above-Average Above-Average
2,3-Dichlorophenol	576-24-9	< 2.18E-05	< 2.14E-05	< 6.52E-05	3.61E-05	V-ST	Above-Average
2,4 + 2,5-Dichlorophenol 2,6-Dichlorophenol	120-83-2 / 583-78-8 87-65-0	< 2.18E-05 < 2.18E-05	< 3.70E-05 < 2.18E-05	< 7.48E-05 < 6.52E-05	4.45E-05 3.63E-05	V-ST V-ST	Above-Average Above-Average
2,3,4-Trichlorophenol	15950-66-0	< 2.18E-05	< 2.14E-05	< 6.52 E-05	3.61E-05	V-ST	Above-Average
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2	< 2.18E-05 < 2.18E-05	2.14E-05 < 2.14E-05	< 6.52E-05 < 6.52E-05	3.61E-05 3.61E-05	V-ST V-ST	Above-Average Above-Average
3,4,5-Trichlorophenol	609-19-8	< 2.18E-05 < 2.18E-05	< 2.14E-05 2.14E-05	< 6.52E-05	3.61E-05 3.61E-05	V-ST	Above-Average
2,3,4,6-Tetrachlorophenol 2,3,5,6-Tetrachlorophenol	58-90-2	2.18E-05	< 2.14E-05	< 6.50E-05	3.60E-05	V-ST	Above-Average
4 3 3 D-TELLACDIOCODDENO!	935-95-5	< 2.18E-05	< 2.14E-05	< 6.50E-05	3.60E-05	V-ST	Above-Average


⁻ Stack test performed in October and December 2018 by Rowan Williams Davies and Irwin Inc. (RWDI) - Calcium and ferric oxide calculated from metals with molecular weight conversion

Calculation Sheet 1B - Kiln Stack Emissions - Future

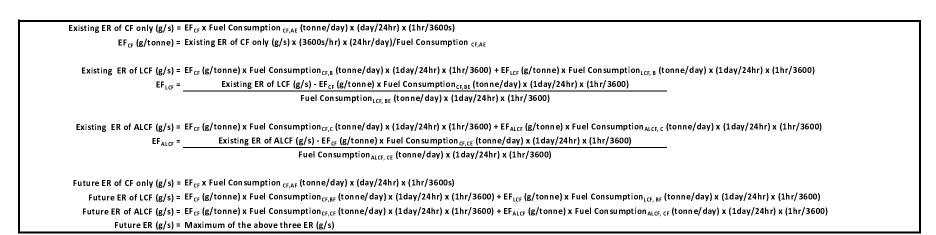
With respect to the kiln stack emissions for the future scenario, emission factors (g/tonne of fuel input) were first derived from the 2018 source testing results for baseline, low carbon fuel substitution and alternative fuel substitution (demonstration trial 2). Emission rates of the future scenario were then estimated using these emission factors and the proposed fuel consumption rates.

With respect to total suspended particulate, PM2.5, NO2, SO2, NH3 and CO, kiln stack emissions are dominated by conditions of the kiln system and associated air pollution control equipment. These conditions are not expected to change for the future scenario. The average of the 2018 source testing results for baseline, LCF substitution and alternative fuel substitution is assumed to be the representative realistic maximum kiln stack emission rate for these CoPCs.

With respect to all other CoPCs, the methodology is detailed below.

Connected	E. Source 1	Testing Existing Fuel Connes/day)	on sumption	F. F	uture Fuel Consur (tonnes/day)	nption
Scenario	Conventional Fuel	Low Carbon Fuel	Alternative Low Carbon Fuel	Conventional Fuel	Low Carbon Fuel	Alternative Low Carbon Fuel
Conventional Fuel Only	608	0	0	613	0	0
Conventional Fuel + Low Carbon Fuel	530	96	0	430	400	0
Conventional Fuel + Alternative Low Carbon Fuel	490	0	287	430	0	400

Scenario Coding Example: BE - Conventional Fuel + LCF (Woody), Existing


Particulate PM PM10 PM2.5 P Combustion Gases NO2 NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid 764 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum Aluminum 744 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Manganese 743 Mercury 743 Molyb denum 743 Selenium 772 Silver 744 Strontium 744 Tin 744 Vanadium 744 </th <th>PM PM10 M2.5 02-44-0 16-09-5 0-08-0 34-41-7 17-01-0 29-90-5 10-36-0 10-38-2 10-38-2 10-47-3 10-42-8 10-47-3 10-42-8 10-47-3 10-47-3 10-48-4 10-50-8 10-95-4 10-99-7 10-09-7</th> <th> 3.07E+00</th> <th> 1.22E+00</th> <th>Alternative Low Carbon Fuel (Dec 2018) 4.17E+00 5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-04 < 1.91E-03 < 3.00E-05 < 5.07E-04 < 3.20E-05 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04 < 4.60E-05</th> <th>Conventional Fuel (EF_{cF}) </th> <th> Low Carbon Fuel (EFLCF)</th> <th>Alternative Low Carbon Fuel (EF_{ALCF}) </th> <th>Emission Rate (Future) (g/s) 2.88E+00 4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-04 9.69E-04 2.07E-02 2.83E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02 5.57E-04</th> <th> V-ST</th> <th>Above-Average Above-Average Above-Average</th>	PM PM10 M2.5 02-44-0 16-09-5 0-08-0 34-41-7 17-01-0 29-90-5 10-36-0 10-38-2 10-38-2 10-47-3 10-42-8 10-47-3 10-42-8 10-47-3 10-47-3 10-48-4 10-50-8 10-95-4 10-99-7 10-09-7	3.07E+00	1.22E+00	Alternative Low Carbon Fuel (Dec 2018) 4.17E+00 5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-04 < 1.91E-03 < 3.00E-05 < 5.07E-04 < 3.20E-05 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04 < 4.60E-05	Conventional Fuel (EF _{cF})	Low Carbon Fuel (EFLCF)	Alternative Low Carbon Fuel (EF _{ALCF})	Emission Rate (Future) (g/s) 2.88E+00 4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-04 9.69E-04 2.07E-02 2.83E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02 5.57E-04	V-ST	Above-Average
PM PM10 P PM2.5 P Combustion Gases 101 NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid 764 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum Aluminum 742 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 744 Ferric Oxide 130 Lead 743 Manganese 743 Mercury 743 Molyb denum 743 Nickel 744 Phosphorus 772 Pota ssium 744 Strontium 744 Tin 744 <tr< th=""><th>02-44-0 02-44-0 06-09-5 0-08-0 64-41-7 17-01-0 19-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-41-7 10-42-8 10-43-9 105-78-8 10-47-3 10-48-4 10-50-8 10-99-5 10-99-6 10-99-7 10-99-9 10-</th><th>3.07E+00 4.24E-01 1.80E-01 9.33E+01 1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04</th><th>5.08E-01 2.12E-01 9.36E+01 1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 4.27E-01 < 5.38E-04 < 3.58E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 3.82E-04</th><th>4.17E+00 5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04</th><th>1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02</th><th></th><th></th><th>4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-02 9.56E-02 9.78E-02</th><th> V-ST</th><th>Above-Average Above-Average Above-Average</th></tr<>	02-44-0 02-44-0 06-09-5 0-08-0 64-41-7 17-01-0 19-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-41-7 10-42-8 10-43-9 105-78-8 10-47-3 10-48-4 10-50-8 10-99-5 10-99-6 10-99-7 10-99-9 10-	3.07E+00 4.24E-01 1.80E-01 9.33E+01 1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	5.08E-01 2.12E-01 9.36E+01 1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 4.27E-01 < 5.38E-04 < 3.58E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 3.82E-04	4.17E+00 5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04	1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02			4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-02 9.56E-02 9.78E-02	V-ST	Above-Average
PM PM10 P PM2.5 P Combustion Gases 101 NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid 764 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum Aluminum 742 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 744 Ferric Oxide 130 Lead 743 Manganese 743 Mercury 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Silver 744 Strontium 744 Tin	02-44-0 02-44-0 06-09-5 0-08-0 64-41-7 17-01-0 19-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-41-7 10-42-8 10-43-9 105-78-8 10-47-3 10-48-4 10-50-8 10-99-5 10-99-6 10-99-7 10-99-9 10-	4.24E-01 1.80E-01 9.33E+01 1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	5.08E-01 2.12E-01 9.36E+01 1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 4.27E-01 < 5.38E-04 < 3.58E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 3.82E-04	5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-04 < 3.20E-05 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-05 < 3.73E-04 2.36E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	- 1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02			4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-02 9.56E-02 9.78E-02	V-ST	Above-Average
PM10 PM2.5 PM2.5 P Combustion Gases NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid Ammonia 766 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum 742 Arsenic 744 Barium 744 Beryllium 744 Beryllium 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 133 Lead 743 Manganesium 743 Mercury 743 Mercury 744 Molyb denum 744 Silver 744 Selenium 778 Silver 744 Strontium 744 Tin 744 <	02-44-0 02-44-0 06-09-5 0-08-0 64-41-7 17-01-0 19-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-41-7 10-42-8 10-43-9 105-78-8 10-47-3 10-48-4 10-50-8 10-99-5 10-99-6 10-99-7 10-99-9 10-	4.24E-01 1.80E-01 9.33E+01 1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	5.08E-01 2.12E-01 9.36E+01 1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 4.27E-01 < 5.38E-04 < 3.58E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 3.82E-04	5.08E-01 2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-04 < 3.20E-05 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-05 < 3.73E-04 2.36E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	- 1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02			4.66E-01 1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-02 9.56E-02 9.78E-02	V-ST	Above-Average
PM2.5 P Combustion Gases NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid 766 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beryllium 744 Beryllium 744 Boron 744 Cadmium 744 Cadmium 744 Chromium 744 Copper 744 Iron 742 Copper 744 Iron 743 Angnesium 743 Manganese 743 Manganese 743 Mickel 744 744 Phosphorus 772 Potassium 744 Silver 744 Selenium 744 Silver 744 744 Strontium 744 744 Tin 744 744 Tin 744 Tin	M2.5 02-44-0 16-09-5 0-08-0 54-41-7 77-01-0 19-90-5 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 10-57-8-8 10-47-3 10-48-4 10-50-8 10-89-95-4 10-99-7 10-99-7 10-02-0 10-09-7 10-02-4 10-02-6	1.80E-01 9.33E+01 1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	2.12E-01 9.36E+01 1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-05 < 5.38E-04 < 1.57E-01 < 5.38E-04 < 3.58E-05 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 3.82E-04	2.12E-01 8.67E+01 1.69E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.28E+00 1.13E+01	- 2.54E+02 3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.96E-01 9.34E+01 1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-02 9.78E-02	V-ST V-ST	Above-Average
NO2 101 SO2 744 CO 63 Ammonia & Hydrochloric Acid 766 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Mangnesium 743 Manganese 743 Mercury 743 Molybdenum 744 Pickel 744 Pselenium 772 Potassium 744 Selenium 774 Silver 744 Strontium 744 Tin 744 Vanadium <	16-09-5 16-09-5 17-01-0 17-01-0 19-90-5 10-38-2 10-39-3 10-41-7 10-42-8 10-42-8 10-43-9 10-43-9 10-48-4 10-50-8 10-48-4 10-50-8 10-9-37-1 10-9-9-5 10-9-9-7 10-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 5.38E-04 < 2.7E-01 < 5.38E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	1.69E+02 1.00E+02 1.00E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04		- 1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.28E+00 1.13E+01	- 2.54E+02 3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
SO2 744 CO 63 Ammonia & Hydrochloric Acid 766 Hydrochloric Acid 766 Metals & Metal Oxides Aluminum Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beron 744 Cadmium 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Marguesium 743 Marguesium 743 Molybdenum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Vanadium	16-09-5 16-09-5 17-01-0 17-01-0 19-90-5 10-38-2 10-39-3 10-41-7 10-42-8 10-42-8 10-43-9 10-43-9 10-48-4 10-50-8 10-48-4 10-50-8 10-9-37-1 10-9-9-5 10-9-9-7 10-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	1.26E+02 9.67E+01 5.01E+00 1.03E+00 3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.42E+02 N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 < 5.38E-04 < 2.7E-01 < 5.38E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	1.69E+02 1.00E+02 1.00E+02 1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04		- 1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.28E+00 1.13E+01	- 2.54E+02 3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.41E+02 9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
CO 63 Ammonia & Hydrochloric Acid 766 Hydrochloric Acid 766 Metals & Metal Oxides 742 Aluminum 742 Antimony 744 Arsenic 749 Barium 744 Beryllium 744 Boron 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Marcury 743 Molyb denum 743 Mickel 744 Phosphorus 772 Potassium 744 Silver 744 Strontium 744 Tin 744 Tin 744 Valadium 744 Valadium 744 Volatile Organic Compounds Acetone (2-Propanone)	0-08-0 34-41-7 17-01-0 29-90-5 10-36-0 10-38-2 10-38-2 10-42-8 10-42-8 10-42-8 10-43-9 15-78-8 10-43-9 15-78-8 10-43-9 15-78-8 10-48-4 10-50-8 19-92-1 19-92-1 19-92-1 19-93-7 10-02-0 13-14-0 10-02-0 13-14-0 10-02-7 10-02-4 10-22-4	9.67E+01 5.01E+00 1.03E+00 3.77E-02 4.81E-04 1.73E-03 4.81E-04 1.73E-03 5.28E-03 3.18E-05 5.43E-01 5.30E-04 1.17E-04 2.97E-04 3.13E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.148E-02 6.40E-02 4.3.21E-04 4.205E-04	N.D. 5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 4.7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	1.00E+02 5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 4.2E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	- 1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.54E+02 3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	9.79E+01 5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST	Above-Average
Ammonia & Hydrochloric Acid Ammonia 766 Hydrochloric Acid 764 Metals & Metal Oxides Aluminum 742 Antimony 744 Arsenic 7744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Magnesium 743 Manganese 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Silver 744 Strontium 744 Tin 744 Titanium 744 Vanadium 744 Volatile Organic Compounds Acetone (2-Propanone) 67	34-41-7 17-01-0 29-90-5 10-36-0 10-38-2 10-38-2 10-38-2 10-42-8 10-42-8 10-43-9 10-50-8 10-50-8 10-50-8 10-9-2-1 10-9-2-1 10-9-2-1 10-9-2-1 10-9-2-1 10-9-7	5.01E+00 1.03E+00 3.77E-02 4.81E-04 1.73E-03 2.89E-05 5.28E-03 3.18E-05 5.43E-01 5.30E-04 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.148E-02 6.40E-02 4.31E-04 < 1.48E-02 6.40E-02 < 3.21E-04	5.30E+00 1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-04 < 3.58E-05 4.27E-01 < 5.38E-04 3.58E-04 3.58E-04 3.58E-04 1.30E-04 3.82E-04 3.82E-04 3.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	5.22E+00 1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-05 3.00E-05 < 1.80E-02 2.37E-03 < 3.06E-04 4.17E-04 < 1.55E-02 < 3.38E-04	1.46E+02 5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.42E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.54E+02 3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	5.13E+00 1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST	Above-Average
Ammonia 766 Hydrochloric Acid 764 Metals & Metal Oxides 742 Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Mangaesium 743 Mercury 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Silver 744 Strontium 744 Tin 744 Tin 744 Tin 744 Vanadium 744 Zinc 740 Valatile Organic Compounds Acetone (2-Propanone) 67	17-01-0 19-90-5 10-36-0 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 10-7-8 10-43-9 10-7-8 10-48-4 10-50-8 10-39-6 10-39-6 10-39-7 10-90-7 10-02-0 10-09-7 10-02-4 10-02-6	1.03E+00 3.77E-02 4.81E-04 1.73E-03 2.89E-05 5.28E-03 3.18E-05 5.43E-01 5.30E-04 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.148E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04	1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04	5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.24E-00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 2.10E+00 9.09E+00 4.56E-02	1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-03 2.56E-02 9.78E-02	V-ST	Above-Average
Hydrochloric Acid 764 Metals & Metal Oxides 742 Aluminum 742 Artimony 744 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 133 Lead 743 Magnesium 743 Manganese 743 Mercury 744 Molyb denum 744 Phosphorus 772 Potassium 744 Silver 744 Silver 744 Silver 744 Silver 744 Thallium 744 Tin 744 Vanadium 744 Zinc 746 Volatile Organic Compounds <td>17-01-0 19-90-5 10-36-0 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 10-7-8 10-43-9 10-7-8 10-48-4 10-50-8 10-39-6 10-39-6 10-39-7 10-90-7 10-02-0 10-09-7 10-02-4 10-02-6</td> <td>1.03E+00 3.77E-02 4.81E-04 1.73E-03 2.89E-05 5.28E-03 3.18E-05 5.43E-01 5.30E-04 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.148E-02 6.40E-02 < 3.21E-04 < 2.05E-04</td> <td>1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 </td> <td>1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04</td> <td>5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.24E-00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 2.10E+00 9.09E+00 4.56E-02</td> <td>1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01</td> <td>3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00</td> <td>1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-03 2.56E-02 9.78E-02</td> <td>V-ST V-ST V-ST</td> <td>Above-Average Above-Average Above-Average</td>	17-01-0 19-90-5 10-36-0 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 10-7-8 10-43-9 10-7-8 10-48-4 10-50-8 10-39-6 10-39-6 10-39-7 10-90-7 10-02-0 10-09-7 10-02-4 10-02-6	1.03E+00 3.77E-02 4.81E-04 1.73E-03 2.89E-05 5.28E-03 3.18E-05 5.43E-01 5.30E-04 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 4.148E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.10E+00 3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04	1.67E+00 2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04	5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.24E-00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 2.10E+00 9.09E+00 4.56E-02	1.85E+02 1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.90E+00 3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 2.07E-03 2.56E-02 9.78E-02	V-ST	Above-Average
Metals & Metal Oxides Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Marganese 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Valotile Organic Compounds Acetone (2-Propanone) 67	19-90-5 10-36-0 10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-47-3 10-48-4 10-47-3 10-48-4 10-50-8 19-97-1 19-95-1 19-95-1 19-95-1 19-95-1 19-95-1 19-96-5 19-97-6 19-98-7 10-09-7 12-49-2 10-09-7 12-49-2 10-22-4 10-22-6	3.77E-02 < 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	3.14E-02 < 5.38E-04 < 1.44E-04 1.31E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-04 3.82E-04 3.82E-04 3.82E-04 3.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	2.11E-02 < 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 3.00E-05 3.00E-05 < 3.73E-04 4.17E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 3.38E-04	5.36E+00 6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.24E-00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 2.10E+00 9.09E+00 4.56E-02	1.07E-01 2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	3.59E-02 6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	3.80E-02 8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Aluminum 742 Antimony 744 Arsenic 744 Barium 744 Beryllium 744 Beryllium 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Marganese 743 Mercury 743 Molyb denum 744 Nickel 744 Phosphorus 772 Potassium 744 Selnium 744 Strontium 744 Thallium 744 Tin 744 Vanadium 744 Vanadium 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-36-0 10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 15-78-8 10-47-3 10-48-4 10-50-8 10-39-6 10-37-1 10-39-6 10-39-6 10-39-6 10-39-7 10-	< 4.81E-04 < 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	 5.38E-04 1.44E-04 1.31E-03 3.23E-05 5.38E-03 3.32E-05 4.27E-01 5.38E-04 3.58E-05 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 7.92E-04 1.65E-02 6.84E-02 3.59E-04 	<pre>< 5.07E-04 < 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 < 5.07E-04 < 3.20E-01 << 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04</pre>	6.84E-02 1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	8.35E-04 1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Arsenic 744 Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Mercury 743 Molybdenum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Trianium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-38-2 10-39-3 10-41-7 10-42-8 10-43-9 15-78-8 10-47-3 10-48-4 10-50-8 10-9-37-1 10-9-1 10-9-5-4 10-9-7 10-02-0 13-14-0 10-09-7 10-02-4 10-02-4 10-02-4	< 1.40E-04 1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	< 1.44E-04	< 1.35E-04 1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.98E-02 2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.73E-02 1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.02E-02 6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	6.80E-03 1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.92E-04 1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Barium 744 Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Mercury 743 Molybdenum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds 67	10-39-3 10-41-7 10-42-8 10-43-9 10-7 10-43-9 10-47-3 10-48-4 10-50-8 19-89-6 19-37-1 19-92-1 19-92-1 19-95-4 19-96-5 19-97-6 19-97-6 19-97-6 19-02-0 13-14-0 10-09-7 10-02-4 10-22-4 10-22-4	1.73E-03 < 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.3 1E-03 < 3.23E-05 < 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	1.91E-03 < 3.00E-05 < 5.07E-03 < 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	2.45E-01 4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	6.40E-03 7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	1.56E-01 2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.94E-03 5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Beryllium 744 Boron 744 Cadmium 744 Calcium Oxide 133 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Molyb denum 743 Mickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-41-7 10-42-8 10-43-9 15-78-8 10-43-9 15-78-8 10-48-4 10-50-8 19-89-6 19-92-1 189-92-1 189-95-4 199-96-5 199-97-6 199-98-7 10-02-0 133-14-0 10-09-7 10-09-7 10-02-4 10-22-4 10-22-6	< 2.89E-05 < 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	 3.23E-05 5.38E-03 3.32E-05 4.27E-01 5.38E-04 3.58E-05 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 7.92E-04 1.65E-02 6.84E-02 3.59E-04 	 3.00E-05 5.07E-03 3.00E-05 2.20E-01 5.07E-04 3.20E-05 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 3.06E-04 8.08E-04 4.17E-04 1.55E-02 3.38E-04 	4.11E-03 7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.42E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.02E-03 2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	5.01E-05 6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Boron	10-42-8 10-43-9 15-78-8 10-47-3 10-48-4 10-50-8 19-89-6 19-37-1 19-92-1 19-92-1 19-95-4 19-96-5 19-97-6 19-98-7 10-02-0 13-14-0 10-09-7 132-49-2 10-22-4 10-22-6	<pre>< 5.28E-03 3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04</pre>	< 5.38E-03 < 3.32E-05 4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 4.7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	<pre>< 5.07E-03 < 3.00E-05</pre>	7.50E-01 4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.42E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	7.00E-01 4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.45E-01 1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	6.97E-03 4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Cadmium 744 Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 133 Lead 743 Magnesium 743 Marcury 744 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 740 Volatile Organic Compounds Acetone (2-Propanone) 67	10-43-9 10-43-9 10-47-3 10-48-4 10-50-8 19-89-6 19-93-1 19-92-1 19-92-1 19-95-4 19-96-5 19-98-7 10-02-0 13-14-0 10-09-7 12-49-2 10-22-4 10-22-6	3.18E-05 5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	 3.32E-05 4.27E-01 5.38E-04 3.58E-05 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 1.65E-02 6.84E-02 3.59E-04 	<pre>< 3.00E-05 2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04</pre>	4.51E-03 7.71E+01 7.53E-02 1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	4.97E-03 6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	1.33E-03 2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	4.55E-05 5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Calcium Oxide 130 Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Manganese 743 Morcury 743 Mickel 744 Phosphorus 772 Potassium 744 Selenium 774 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	05-78-8 10-47-3 10-48-4 10-50-8 19-89-6 199-37-1 199-95-4 199-95-4 199-96-5 199-97-6 199-98-7 10-02-0 123-14-0 10-09-7 132-49-2 10-22-4 10-22-6	5.43E-01 < 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	4.27E-01 < 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	2.20E-01 < 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	7.71E+01 7.53E-02 1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	6.84E-02 4.24E-02 2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.40E-02 4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	5.47E-01 6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Chromium 744 Cobalt 744 Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Manganese 743 Mercury 743 Mickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-47-3 10-48-4 10-50-8 19-89-6 19-37-1 189-92-1 189-95-4 189-96-5 189-97-6 189-98-7 10-02-0 13-14-0 10-09-7 132-49-2 10-22-4	< 5.30E-04 < 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	< 5.38E-04 < 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 4.792E-04 < 1.65E-02 6.84E-02 < 3.59E-04	< 5.07E-04 < 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	7.53E-02 1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	6.91E-04 1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Cobalt 744 Copper 744 Iron 743 Ferric Oxide 133 Lead 743 Magnesium 743 Manganese 744 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-48-4 10-50-8 19-89-6 19-37-1 19-92-1 19-92-1 19-96-5 19-96-5 19-97-6 19-98-7 10-02-0 13-14-0 10-09-7 10-02-2 10-22-4 10-22-4	< 1.17E-04 2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	< 3.58E-05 < 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	< 3.20E-05 < 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.66E-02 4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.02E-02 4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.17E-04 4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Copper 744 Iron 743 Ferric Oxide 130 Lead 743 Magnesium 743 Marcury 743 Molybdenum 744 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Vanadium 744 Zinc 744 Volatile Organic Compounds 67 Acetone (2-Propanone) 67	10-50-8 10-50-8 10-50-8 10-9-37-1 10-9-9-1 10-9-5-4 10-9-9-6 10-9-9-6 10-02-0 10-02-	2.97E-04 3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	< 3.06E-04 2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	< 3.73E-04 2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	4.22E-02 4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	4.06E-04 3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average
Iron	89-89-6 99-37-1 89-92-1 89-95-4 89-96-5 89-98-7 10-02-0 13-14-0 10-09-7 32-49-2 10-22-4 10-24-6	3.13E-02 8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	2.59E-02 7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	2.36E-02 6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	4.44E+00 1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.11E-01 1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.45E-01 4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	3.15E-02 9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average
Ferric Oxide 130 Lead 743 Magnesium 743 Manganese 743 Mercury 743 Molyb denum 744 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	09-37-1 89-92-1 89-95-4 89-96-5 89-98-7 10-02-0 33-14-0 10-09-7 32-49-2 10-22-4 10-24-6	8.94E-02 6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	7.41E-02 8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	6.75E-02 3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.27E+01 9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	9.01E-02 1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average
Lead 743 Magnesium 743 Manganese 743 Mercury 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	89-92-1 89-95-4 89-96-5 89-97-6 89-98-7 10-02-0 13-14-0 10-09-7 32-49-2 10-22-4 10-22-6	6.85E-04 2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	8.32E-04 1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	3.00E-04 1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	9.73E-02 2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	1.46E-03 2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average
Magnesium 743 Manganese 743 Mercury 743 Molybdenum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	89-95-4 89-96-5 89-97-6 89-98-7 10-02-0 83-14-0 10-09-7 82-49-2 10-22-4 10-24-6	2.05E-02 1.13E-03 2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	1.30E-02 8.02E-04 3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	1.80E-02 2.37E-03 < 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	2.91E+00 1.61E-01 4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	1.18E-01 2.96E-02 3.84E-01 3.28E+00 1.13E+01	4.39E-01 2.22E-02 9.97E-03 2.38E-02 1.09E+00	2.07E-02 2.83E-03 7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST V-ST V-ST	Above-Average Above-Average Above-Average Above-Average Above-Average Above-Average
Mercury 743 Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	89-97-6 89-98-7 10-02-0 23-14-0 10-09-7 82-49-2 10-22-4 10-24-6	2.88E-04 9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	3.82E-04 8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	< 3.06E-04 8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	4.09E-02 1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.96E-02 3.84E-01 3.28E+00 1.13E+01	2.22E-02 9.97E-03 2.38E-02 1.09E+00	7.49E-04 9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST V-ST	Above-Average Above-Average Above-Average Above-Average
Molyb denum 743 Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	89-98-7 10-02-0 23-14-0 10-09-7 32-49-2 10-22-4 10-24-6	9.62E-04 4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	8.71E-04 7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	8.08E-04 4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	1.37E-01 5.96E-02 2.10E+00 9.09E+00 4.56E-02	2.96E-02 3.84E-01 3.28E+00 1.13E+01	9.97E-03 2.38E-02 1.09E+00	9.69E-04 2.07E-03 2.56E-02 9.78E-02	V-ST V-ST V-ST	Above-Average Above-Average Above-Average
Nickel 744 Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-02-0 23-14-0 10-09-7 32-49-2 10-22-4 10-24-6	4.20E-04 < 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	7.92E-04 < 1.65E-02 6.84E-02 < 3.59E-04	4.17E-04 < 1.55E-02 < 2.66E-02 < 3.38E-04	5.96E-02 2.10E+00 9.09E+00 4.56E-02	3.84 E-01 3.28E+00 1.13E+01	2.38E-02 1.09E+00	2.07E-03 2.56E-02 9.78E-02	V-ST V-ST	Above-Average Above-Average
Phosphorus 772 Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	23-14-0 10-09-7 32-49-2 10-22-4 10-24-6	< 1.48E-02 6.40E-02 < 3.21E-04 < 2.05E-04	< 1.65E-02 6.84E-02 < 3.59E-04	< 1.55E-02 < 2.66E-02 < 3.38E-04	2.10E+00 9.09E+00 4.56E-02	3.28E+00 1.13E+01	1.09E+00	2.56E-02 9.78E-02	V-ST	Above-Average
Potassium 744 Selenium 778 Silver 744 Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-09-7 32-49-2 10-22-4 10-24-6	6.40E-02 < 3.21E-04 < 2.05E-04	6.84E-02 < 3.59E-04	< 2.66E-02 < 3.38E-04	9.09E+00 4.56E-02	1.13E+01		9.78E-02		
Selenium 778 Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	32-49-2 10-22-4 10-24-6	< 3.21E-04 < 2.05E-04	< 3.59E-04	< 3.38E-04	4.56E-02		2 205 02			I A I A
Silver 744 Strontium 744 Thallium 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-22-4 10-24-6	< 2.05E-04							V-ST V-ST	Above-Average Above-Average
Strontium 744 Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-24-6		\ 4.51L-05		1 2 01F 02	7.132 02	2.396-02	2.07E-04	V-ST	Above-Average
Thallium 744 Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67			6.63E-04	4.98E-04	2.91E-02 1.14E-01			8.12E-04	V-ST	Above-Average
Tin 744 Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67		< 4.16E-05	< 4.31E-05	< 4.10E-05	5.91E-03	6.15E-03	2.25E-03	5.79E-05	V-ST	Above Average
Titanium 744 Vanadium 744 Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	0-31-5	5.66E-03	6.93E-03	3.34E-03	8.04E-01	1.80E+00		1.23E-02	V-ST	Above-Average
Zinc 744 Volatile Organic Compounds Acetone (2-Propanone) 67	10-32-6	2.60E-03	2.25E-03	1.85E-03	3.69E-01			2.62E-03	V-ST	Above-Average
Volatile Organic Compounds Acetone (2-Propanone) 67	10-62-2	< 1.04E-04	< 1.08E-04	< 1.01E-04	1.47E-02	1.60E-02	5.29E-03	1.47E-04	V-ST	Above-Average
Acetone (2-Propanone) 67	10-66-6	< 2.20E-03	< 1.98E-03	< 2.82E-03	3.12E-01	5.99E-02	3.16E-01	3.02E-03	V-ST	Above-Average
	7-64-1	8.94E-02	8.18E-02	1.23E-01	1.27E+01	3.52E+00	1.53E+01	1.34 E-01	V-ST	Above-Average
	7-02-8	1.80E-02	1.72E-02	1.72E-02	2.56E+00	1.36E+00	8.11E-01	1.90E-02	V-ST	Above-Average
	L-43-2 5-27-4	2.61E-01 < 1.62E-04	2.68E-01 < 1.59E-04	2.48E-01 < 1.56E-04	3.70E+01 2.30E-02	3.72E+01 1.64E-02	1.15E+01 7.78E-03	3.56E-01 1.90E-04	V-ST V-ST	Above-Average Above-Average
	5-25-2	< 2.06E-04	< 2.02E-04	< 1.99E-04	2.92E-02	2.06 E-02	1.00E-02	2.4 1E-04	V-ST	Above-Average
	1-83-9	< 5.43E-03	< 4.62E-03	< 1.11E-02	7.72E-01	2.001 02	2.02E+00	1.32E-02	V-ST	Above Average
	3-93-3	< 5.29E-04	< 5.19E-04	< 5.11E-04	7.72E 01 7.51E-02	5.25E-02	2.56E-02	6.17E-04	V-ST	Above-Average
	5-23-5	< 2.35E-04	< 2.31E-04	< 2.27E-04	3.33E-02	2.39E-02	1.14 E-02	2.77E-04	V-ST	Above-Average
	8-90-7	5.41E-03	8.18E-03	< 8.25E-03	7.68E-01	3.12E+00	1.17E+00	1.83E-02	V-ST	Above-Average
	5-00-3	8.56E-03	7.03E-03	8.90E-03	1.22E+00		6.02E-01	8.84E-03	V-ST	Above-Average
	7-66-3	< 1.62E-04	< 1.59E-04	< 1.56E-04	2.30E-02	1.64 E-02	7.78E-03	1.90E-04	V-ST	Above-Average
	-87-3	8.76E-02	6.77E-02	9.12E-02	1.24E+01	ļ	6.21E+00	9.07E-02	V-ST	Above-Average
	3-82-8	< 3.92E-02	< 1.03E-02	< 1.11E-02	5.57E+00	4 2 2 2 2 2	6.515.55	3.95E-02	V-ST	Above-Average
	4-48-1	< 1.32E-04	< 1.30E-04	< 1.28E-04	1.88E-02	1.34 E-02	6.51E-03	1.56E-04	V-ST	Above-Average
	5-34-3 7-06-2	< 1.76E-04 < 1.03E-04	< 1.73E-04 < 1.01E-04	< 1.70E-04 < 9.90E-05	2.50E-02 1.46E-02	1.76E-02 1.01E-02	8.48E-03 4.81E-03	2.06E-04 1.20E-04	V-ST V-ST	Above-Average Above-Average
	7-06-2 5-35-4	< 1.03E-04 < 1.62E-04	< 1.01E-04 < 1.59E-04	< 9.90E-05 < 1.56E-04	2.30E-02	1.01E-02 1.64E-02	4.81E-03 7.78E-03	1.20E-04 1.90E-04	V-ST	Above-Average Above-Average
,	6-59-2	< 1.62E-04 < 1.47E-04	0.00E+00	< 1.42E-04	2.09E-02	1.04 L-02	7.78E-03 7.08E-03	1.48E-04	V-ST	Above-Average
	6-60-5	< 1.47E-04	< 1.44E-04	< 1.42E-04	2.09E-02	1.43E-02	7.08E-03	1.70E-04	V-ST	Above-Average
	3-87-5	< 1.62E-04	< 1.59E-04	< 1.56E-04	2.30E-02	1.64 E-02	7.78E-03	1.90E-04	V-ST	Above-Average
	0-41-4	3.61E-02	3.82E-02	3.73E-02	5.12E+00	6.10E+00	2.48E+00	5.37E-02	V-ST	Above-Average
	6-93-4	< 1.47E-04	< 1.44E-04	< 1.42E-04	2.09E-02	1.43E-02	7.08E-03	1.70E-04	V-ST	Above-Average
	5-09-2	< 2.79E-04	< 2.74E-04	< 2.70E-04	3.96E-02	2.77E-02	1.36E-02	3.26E-04	V-ST	Above-Average
,	0-42-5	3.70E-02	4.69E-02	2.93E-02	5.25E+00	1.32E+01		8.73E-02	V-ST	Above-Average
	0-20-6	< 1.47E-04	< 1.44E-04	< 1.42E-04	2.09E-02	1.43E-02	7.08E-03	1.70E-04	V-ST	Above-Average
	9-34-5	< 2.06E-04	< 2.02E-04	< 1.99E-04	2.92E-02	2.06E-02	1.00E-02	2.41E-04	V-ST	Above-Average
· · · · · · · · · · · · · · · · · · ·	7-18-4	< 2.65E-04	< 2.59E-04	< 2.56E-04	3.76E-02	2.56E-02	1.29E-02	3.06E-04	V-ST	Above-Average
	L-55-6	< 2.06E-04	< 2.02E-04 < 2.31E-04	< 1.99E-04 < 2.27E-04	2.92E-02	2.06 E-02	1.00E-02	2.41E-04	V-ST V-ST	Above-Average
	9-00-5 9-01-6	< 2.35E-04 < 1.62E-04	< 2.31E-04 < 1.59E-04	< 2.27E-04 < 1.56E-04	3.33E-02 2.30E-02	2.39E-02 1.64E-02	1.14 E-02 7.78E-03	2.77E-04 1.90E-04	V-ST	Above-Average Above-Average
	8-88-3	1.74E-01	1.54E-01	1.61E-01	2.47E+01	2.27E+00	6.25E+00	1.90E-04 1.75E-01	V-ST	Above-Average
,	5-01-4	< 1.91E-04	< 5.79E-04	< 7.03E-04	2.47E+01 2.71E-02	3.72E-01	1.65E-01	1.86E-03	V-ST	Above-Average
Xylene 133		2.15E-01	2.04E-01	2.17E-01	3.05E+01	1.49E+01	1.31E+01	2.21E-01	V-ST	Above-Average

Calculation Sheet 1B - Kiln Stack Emissions - Future

With respect to the kiln stack emissions for the future scenario, emission factors (g/tonne of fuel input) were first derived from the 2018 source testing results for baseline, low carbon fuel substitution and alternative fuel substitution (demonstration trial 2). Emission rates of the future scenario were then estimated using these emission factors and the proposed fuel consumption rates.

With respect to total suspended particulate, PM2.5, NO2, SO2, NH3 and CO, kiln stack emissions are dominated by conditions of the kiln system and associated air pollution control equipment. These conditions are not expected to change for the future scenario. The average of the 2018 source testing results for baseline, LCF substitution and alternative fuel substitution is assumed to be the representative realistic maximum kiln stack emission rate for these CoPCs.

With respect to all other CoPCs, the methodology is detailed below.

Connected	E. Source 1	Testing Existing Fuel Connes/day)	on sumption	F. F	uture Fuel Consur (tonnes/day)	nption
Scenario	Conventional Fuel	Low Carbon Fuel	Alternative Low Carbon Fuel	Conventional Fuel	Low Carbon Fuel	Alternative Low Carbon Fuel
Conventional Fuel Only	608	0	0	613	0	0
Conventional Fuel + Low Carbon Fuel	530	96	0	430	400	0
Conventional Fuel + Alternative Low Carbon Fuel	490	0	287	430	0	400

Scenario Coding Example: BE - Conventional Fuel + LCF (Woody), Existing

							1-			
			isting Emission Rates (g/ s)	Emiss	ion Factors (g/		Emission Rate		
Contaminant	CAS Number	Conventional Fuel (Average of Oct&Dec 2018)	Low Carbon Fuel (Dec 2018)	Alternative Low Carbon Fuel (Dec 2018)	Conventional Fuel (EF _{CF})	Low Carbon Fuel (EF _{LCF})	Alternative Low Carbon Fuel (EF _{ALCF})	(Future) (g/s)	Emission Technique	Data Quality
Total D&F					•					
Dioxins, Furans and Dioxin-like PCBs	CDD	2.34E-09	2.33E-09	1.89E-09	3.32E-07	2.65E-07	2.46E-09	2.88E-09	V-ST	Above-Average
Polycyclic Aromatic Hydrocarbons (PAHs	;)									
Benzo(a)pyrene	50-32-8	< 2.17E-05	< 2.14E-05	< 2.17E-05	3.09E-03	2.17E-03	1.26E-03	2.54 E-05	V-ST	Above-Average
2-Chloronaphthalene	91-58-7	3.80E-04	5.51E-04	2.99E-04	5.39E-02	1.98E-01		1.19E-03	V-ST	Above-Average
1-Methylnaphthalene	90-12-0	2.20E-02	2.66E-02	2.19E-02	3.13E+00	6.66E+00	1.24 E+00	4.64 E-02	V-ST	Above-Average
Naphthalene	91-20-3	5.08E-02	< 5.72E-02	4.94E-02	7.23E+00	1.15E+01	2.53E+00	8.94 E-02	V-ST	Above-Average
Tetralin	119-64-2	1.30E-02	< 1.23E-02	1.34 E-02	1.85E+00	8.71E-01	8.76E-01	1.33E-02	V-ST	Above-Average
Chloronated Organics										
1,2-Dichlorobenzene	95-50-1	4.99E-04	4.46E-04	3.59E-04	7.10E-02	9.58E-03		5.04E-04	V-ST	Above-Average
1,3-Dichlorobenzene	541-73-1	2.04E-04	< 2.12E-04	1.70E-04	2.90E-02	3.07E-02	1.68E-03	2.87E-04	V-ST	Above-Average
1,4-Dichlorobenzene	106-46-7	1.94E-04	< 1.87E-04	1.99E-04	2.76E-02	1.61E-02	1.28E-02	2.12E-04	V-ST	Above-Average
1,2,3-Trichlorobenzene	87-61-6	1.62E-04	< 1.49E-04	1.00E-04	2.31E-02	6.79E-03		1.64E-04	V-ST	Above-Average
1,2,4-Trichlorobenzene	120-82-1	1.48E-04	1.53E-04	1.14 E-04	2.10E-02	2.15E-02		2.04E-04	V-ST	Above-Average
1,3,5-Trichlorobenzene	108-70-3	< 2.28E-05	< 2.14E-05	< 2.17E-05	3.24 E-03	1.37E-03	1.00E-03	2.30E-05	V-ST	Above-Average
1,2,3,4-Tetrachlorobenzene	634-66-2	< 2.17E-05	2.14E-05	< 2.17E-05	3.09E-03	2.22E-03	1.26E-03	2.56E-05	V-ST	Above-Average
1,2,3,5+1,2,4,5-Tetrachlorobenzene	634-90-2 / 95-94-3	< 2.17E-05	2.14E-05	< 2.17E-05	3.09E-03	2.22E-03	1.26E-03	2.56E-05	V-ST	Above-Average
Pentachlorobenzene	608-93-5	2.19E-05	< 2.14E-05	2.17E-05	3.11E-03	2.10E-03	1.23E-03	2.52E-05	V-ST	Above-Average
Hexachlorobenzene	118-74-1	2.17E-05	< 2.14E-05	< 2.17E-05	3.09E-03	2.17E-03	1.26E-03	2.54 E-05	V-ST	Above-Average
2,3-Dichlorophenol	576-24-9	< 4.35E-05	< 2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
2,4 + 2,5-Dichlorophenol	120-83-2 / 583-78-8	< 4.83E-05	< 3.70E-05	< 3.49E-05	6.86E-03			4.87E-05	V-ST	Above-Average
2,6-Dichlorophenol	87-65-0	< 4.35E-05	< 2.18E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
2,3,4-Trichlorophenol	15950-66-0	< 4.35E-05	< 2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
2,4,5-Trichlorophenol	95-95-4	< 4.35E-05	2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
2,4,6-Trichlorophenol	88-06-2	< 4.35E-05	< 2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
3,4,5-Trichlorophenol	609-19-8	< 4.35E-05	2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average
2,3,4,6-Tetrachlorophenol	58-90-2	4.34E-05	< 2.14E-05	< 2.17E-05	6.16E-03			4.37E-05	V-ST	Above-Average
2,3,5,6-Tetrachlorophenol	935-95-5	< 4.34E-05	< 2.14E-05	< 2.17E-05	6.16E-03			4.37E-05	V-ST	Above-Average
Pentachlorophenol	87-86-5	< 4.35E-05	< 2.14E-05	< 2.17E-05	6.18E-03			4.38E-05	V-ST	Above-Average

- Stack test performed in October and December 2018 by Rowan Williams Davies and Irwin Inc. (RWDI)
- Calcium and ferric oxide calculated from metals with molecular weight conversion
- $Blank \ cell \ for \ emission \ factor \ indicates \ that \ higher \ emissions \ are \ expected \ when \ conventional \ fuel \ only \ is \ used.$

Calculation Sheet 7A - Stockpile Information for Wind Erosion Calculation

Source ID	Source Description	Pile #	Type of Pile	Height of Pile (m)	Base Diameter (m)	Base Radius (m)	Angle of Repose	Top Radius (m)	Lateral Area (m²)	Top Area (m²)	Total Exposed Surface Area (m²)
RAWPILES-1B	Wind Erosion from the Ash Stockpile	1	Conical	2	20	10	11.3	n/a	n/a	n/a	320.38
RAWPILES-2B	Wind Erosion from the Sand Stockpile	1	Conical	2	20	10	11.3	n/a	n/a	n/a	320.38
RAWPILES-3B	Wind Erosion from the Iron Stockpile	1	Conical	2	20	10	11.3	n/a	n/a	n/a	320.38
CBM-5	Wind erosion of CBM Stockpiles	1	Oval with Flattop	4	60	30	33.7	24.0	1223.3	1809.6	3032.89
CBM-5	Wind erosion of CBM Stockpiles	2	Conical	3	20	10	16.7	n/a	n/a	n/a	327.99
CBM-5	Wind erosion of CBM Stockpiles	3	Oval with Flattop	5	45	23	39.8	16.5	956.9	855.3	1812.23
CBM-5	Wind erosion of CBM Stockpiles	4	Oval with Flattop	12	60	30	22.5	1.0	3056.5	3.1	3059.68
CBM-5	Wind erosion of CBM Stockpiles	5	Oval with Flattop	7	150	75	81.9	74.0	3309.9	17203.4	20513.31
CBM-5	Wind erosion of CBM Stockpiles	6	Oval with Flattop	5	55	28	55.0	24.0	987.5	1809.6	2797.02
CBM-5	Wind erosion of CBM Stockpiles	7	Oval with Flattop	4	38	19	31.6	12.5	755.3	490.9	1246.15
CBM-5	Wind erosion of CBM Stockpiles	8	Oval with Flattop	4	54	27	29.7	20.0	1190.4	1256.6	2447.07
CBM-5	Wind erosion of CBM Stockpiles	9	Oval with Flattop	4	44	22	29.7	15.0	937.1	706.9	1644.01
CBM-5	Wind erosion of CBM Stockpiles	10	Oval with Flattop	5	56	28	42.3	22.5	1179.3	1590.4	2769.69
CBM-5	Wind erosion of CBM Stockpiles	11	Oval with Flattop	8	100	50	48.8	43.0	3105.8	5808.8	8914.59
QUARRY-9	Wind erosion of Quarry stockpiles	1	Oval with Flattop	10	500	250	45.0	240.0	21770.1	180955.7	202725.86
PPILE1B	Wind Erosion of Primary Stockpile #1	1	Conical	18	60	30	31.0	n/a	n/a	n/a	3297.33
PPILE1C	Wind Erosion of Primary Stockpile #2	2	Conical	18	60	30	31.0	n/a	n/a	n/a	3297.33
CD-1B	Wind Erosion of Temporary Pile	1	Conical	8	40	20	21.8	n/a	n/a	n/a	1353.44

Calculation Sheet - Wind Erosion

The number of disturbances per year was determined by subtracting the number of days with rainfall > 0.2 mm from the number of disturbed area is 28%, 54%, 14% and 4% for U s/U_R ratios of 0.2, 0.6, 0.9 and 1.1, respectively. For oval stockpiles with flattops, distribution of disturbed area is 28%, 54%, 14% and 4% for U s/U_R ratios of 0.2, 0.6, 0.9 and 1.1, respectively. The fastest mile is estimated to be 1.18 to 1.27 times the highest wind speed (Australian NPI, 2012). An average of the range (1.225) was applied to the highest hourly windspeed from the Ministry-approved Bowmanville site specific meteorological data.

Emissions (g/s) = Affected Area of Pile (m²) x Erosion Potential (g/m²) x Conversion for Averaging Period (Daily or Annual)

Affected Area of Pile (m²) = Total Exposed Surface Area (m²) x Disturbed (%)

Erosion Potential (g/m²) (if Friction Velocity > Threshold Friction Velocity) = 58 x [Friction Velocity (m/s)- Threshold Friction Velocity (m/s)] 2 + 25 x [Friction Velocity (m/s) - Threshold Friction Velocity (m/s)]

								Industrial Wi	ind Erosion, U.S. EPA AP-	-42, November 2006								24 hr - E	mission R	ate (g/s)	Annual-	Emission Rate (g/s)
Source	Source Description	Material	Pil e Number	Disturbances per Year, N	Height to Base Ratio		Disturbed (%)	Affected Area of Pile, A (m ²)	Total Exposed Surface Area, S (m²)		x, Anemometer Height (m)	Surface Roughness Height (m)	Fastest Mile, U ⁺ 10 (m/s)	Friction Velocity, U [*] (m/s)	Surface Wind Speed , U*s (m/s)	Threshold Friction Velocity, U _t * (m/s)	Erosion Potential, Pi (g/m²) ⁽⁶⁾	PM	PM ₁₀	PM ₂₅	PM	PM ₁₀ PM _{2.5}
Cement Plant									ı					•		ı						
						0.2	40%	128.2						1.47	5.56	3.03	0.00E+00				,	1
RAWPILES-1B	Wind Erosion from the Ash	A sh	1	242.3	0.10	0.6	48%	153.8	320.4	27.8	10.0	0.005	27.8	1.47	16.68	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
	Stockpile					0.9	12%	38.4						1.47	25.03	3.03	0.00E+00	-			,	1
						1.1	n/a	n/a						1.47	30.59	3.03	0.00E+00				+	\longleftarrow
	Mind Francisco francisco Alex Cond					0.2	40%	128.2						1.47 1.47	5.56	3.03	0.00E+00	_			,	1
RAWPILES-2B	Wind Erosion from the Sand Stockpile	Sand	1	242.3	0.10	0.6	48%	153.8 38.4	32 0.4	27.8	10.0	0.005	27.8		16.68	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
	Stockpile					0.9 1.1	12% n/a	n/a						1.47 1.47	25.03 30.59	3.03 3.03	0.00E+00 0.00E+00	-			1	1
		-				0.2	11/ a 40%	128.2						1.47	5.56	3.03	0.00E+00	+			+'	\leftarrow
	Wind Erosion from the Iron					0.2	48%	153.8						1.47	16.68	3.03	0.00E+00	-			,	1
RAWPILES-3B	Stockpile	Iron	1	242.3	0.10	0.9	12%	38.4	320.4	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0 0.00E+00	0.00E+00 0.00E+0
	Stockpile					1.1	n/a	n/a						1.47	30.59	3.03	0.00E+00	-			1	1
						0.2	28%	849.2						1.47	5.56	3.03	0.00E+00				+	\vdash
						0.6	54%	1637.8						1.47	16.68	3.03	0.00E+00				1	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	1	242.3	0.07	0.9	14%	424.6	3032.9	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						1.1	4%	121.3						1.47	30.59	3.03	0.00E+00	-			,	1
						0.2	40%	131.2						1.47	5.56	3.03	0.00E+00				+	\vdash
						0.6	48%	157.4						1.47	16.68	3.03	0.00E+00	-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	2	242.3	0.15	0.9	12%	39.4	328.0	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						1.1	n/a	n/a						1.47	30.59	3.03	0.00E+00	-			,	1
						0.2	11/ a 28%	507.4						1.47	5.56	3.03	0.00E+00				+	
						0.2	54%	978.6						1.47	16.68	3.03	0.00E+00	-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	3	242.3	0.11	0.6	14%	253.7	1812.2	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						1.1	4%	72.5						1.47	30.59	3.03	0.00E+00	-			1	1
						0.2	28%	856.7						0.56	5.56	3.03	0.00E+00				+	
						0.2	54%	1652.2						1.67	16.68	3.03	0.00E+00	-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	4	242.3	0.20	0.6	14%	428.4	3059.7	27.8	10.0	0.005	27.8	2.50	25.03	3.03	0.00E+00	9.87E-04	4.94E-04	7.41E-0	5 2.71E-06	1.35E-06 2.03E-0
																		-			1	1
		-				0.2	4% 28%	122.4 5743.7						3.06 1.47	30.59 5.56	3.03 3.03	6.97E-01	+			+'	\leftarrow
																	0.00E+00	-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	5	242.3	0.05	0.6	54% 14%	11077.2 2871.9	20513.3	27.8	10.0	0.005	27.8	1.47 1.47	16.68 25.03	3.03 3.03	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						0.9												-			1	1
						1.1	4%	820.5						1.47	30.59	3.03	0.00E+00	-			 '	
						0.2	28%	783.2						1.47	5.56	3.03	0.00E+00	-			1	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	6	242.3	0.09	0.6	54%	1510.4	2797.0	27.8	10.0	0.005	27.8	1.47	16.68	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						0.9	14%	391.6						1.47	25.03	3.03	0.00E+00	-			,	1
	+					1.1	4%	111.9 348.9						1.47 1.47	30.59 5.56	3.03	0.00E+00 0.00E+00				+	+
						0.2	28%									3.03		-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	7	242.3	0.11	0.6	54%	672.9	1246.2	27.8	10.0	0.005	27.8	1.47	16.68	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						0.9	14%	174.5						1.47	25.03	3.03	0.00E+00	-			,	1
	+					0.2	4% 28%	4 9. 8 685. 2						1.47 1.47	30.59 5.56	3.03 3.03	0.00E+00 0.00E+00				+	+
						0.2	54%	1321.4						1.47	16.68	3.03	0.00E+00	-			,	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	8	242.3	0.07	0.6	14%	342.6	2447.1	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
																		-			1	1
	+					0.2	4% 28%	97.9 460.3						1.47 1.47	30.59 5.56	3.03 3.03	0.00E+00 0.00E+00				+	+
								887.8							16.68		0.00E+00	-			1	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	9	242.3	0.09	0.6	54%		1644.0	27.8	10.0	0.005	27.8	1.47		3.03		0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						0.9 1.1	14% 4%	230.2 65.8						1.47 1.47	25.03 30.59	3.03 3.03	0.00E+00 0.00E+00	-			,	1
	+					0.2	28%	775.5						1.47	5.56	3.03	0.00E+00				+	+
						0.2	54%	14 95.6	1					1.47	16.68	3.03	0.00E+00	┪	1		1 '	1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	10	242.3	0.09	0.9	14%	387.8	2769.7	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						1.1	4%	110.8	1					1.47	30.59	3.03	0.00E+00	┪	1		1 '	1
	1		 			0.2	28%	24 96.1					+	1.47	5.56	3.03	0.00E+00	1	 		+	\vdash
	1	l		1	l <u>.</u>	0.6	54%	4813.9	1			_	_	1.47	16.68	3.03	0.00E+00	٦				1
CBM-5	Wind erosion of CBM Stockpiles	Limestone	11	242.3	0.08	0.9	14%	1248.0	8914.6	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0.00E+00	0.00E+00 0.00E+0
						1.1	4%	356.6	1					1.47	30.59	3.03	0.00E+00	1			1 '	1
				1		0.2	28%	56763.2						1.47	5.56	3.03	0.00E+00					
	Wind erosion of Quarry					0.6	54%	109472.0						1.47	16.68	3.03	0.00E+00					1
QUARRY-9	stockpiles	Limestone	1	242.3	0.02	0.9	14%	28381.6	202725.9	27.8	10.0	0.005	27.8	1.47	25.03	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	J 0.00E+00	0.00E+00 0.00E+0
	<u> </u>	<u></u>	<u> </u>		<u> </u>	1.1	4%	81 09.0	<u> </u>	<u> </u>			1	1.47	30.59	3.03	0.00E+00	<u> </u>	<u></u>	<u></u>		<u> </u>
						0.2	40%	1318.9						0.56	5.56	3.03	0.00E+00					
PPILE1B	Wind Erosion of Primary	Limestone	1	242.3	0.30	0.6	48%	1582.7	32 97. 3	27.8	10.0	0.005	27.8	1.67	16.68	3.03	0.00E+00	0.00E+00	0.005.00	0.005.0	0.005.00	0.00E+00 0.00E+0
LLITETR	Stockpile #1	Limestone	1	242.3	0.30	0.9	12%	3 95.7	3297.3	27.8	10.0	0.005	27.8	2.50	25.03	3.03	0.00E+00	0.00E+00	U. UUE +UU	0.00E+0	J. U. UUE+UU	0.00E+00 0.00E+0
				<u> </u>		1.1	n/a	n/a	<u></u>				<u> </u>	n/a	n/a	n/a	n/a		<u></u>		<u> </u>	
						0.2	40%	1318.9						0.56	5.56	3.03	0.00E+00					1
PPILE1C	Wind Erosion of Primary	Limestone	2	242.3	0.30	0.6	48%	1582.7	32 97. 3	27.8	10.0	0.005	27.8	1.67	16.68	3.03	0.00E+00	0.005±00	0.005±00	0.00540	0 00E±00	0.00E+00 0.00E+0
	Stockpile #2			1 272.3] 5.30	0.9	12%	3 95.7	1 323/3	[27.0	10.0	5.005	1 2/.0	2.50	25.03	3.03	0.00E+00	5.502100	5.002100	5,552.70		
				L	<u> </u>	1.1	n/a	n/a	L				<u> </u>	n/a	n/a	n/a	n/a					
Cargo Dockers						1	1 45:- 1	F 42 .	1					1 0	T	1	1 00				7	
		Raw				0.2	40%	541.4	1					0.56	5.56	3.03	0.00E+00	-1			1 '	1
CD-1B	Wind Erosion of Temporary Pile	Materials,	1	242.3	0.20	0.6	48%	649.7	1353.4	27.8	10.0	0.005	27.8	1.67	16.68	3.03	0.00E+00	0.00E+00	0.00E+00	0.00E+0	0 0.00E+00	0.00E+00 0.00E+0
	1	Solid Fuels,				0.9	12%	162.4						2.50	25.03	3.03	0.00E+00	-	1		1 '	1
		Salt	<u> </u>	1		1.1	n/a	n/a						n/a	n/a	n/a	n/a	_1	1	1		

Unpaved Road Emission Factor (g/VMT) = k x [(Silt Content, s/12]^a] x [Mean Vehicle Weight, W/3]^b] x (281.9 g/VKT)/(1 lb/VWT)

Controlled Emissions (g/s) = Unpaved Road Emission Factor (g/VKT) x Trip Distance (km) x (1-Control Efficiency [%]) x (1 day/24 hr) x (1 hr/3600 s)

Source I.D.	Activity	Contaminant	CAS No.	Averaging Period	Round Trip Distance (km)	Number of Trips	Empty Truck Weight	Load Weight (tonne)	Loaded Truck Weight (tonne)	Mean Vehicle Weight (tonne)	Silt Content of Unpaved Road, s (%)	k	a	b	Emission Factor (g/VKT)	Additional Control Efficiency (%)	Controlled Emissions (g/s)	Estimation Technique
					(KIII)	11162	Cement Plant		(tolline)	weight (tollie)	onpavea noda, s (70)				(6) (11)	Efficiency (70)	E11113310113 (6/3)	recimique
CBM-7	Road dust from FEL operating in CBM area	PM	PM	24 hr	0.24	70	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	1.27E-02	EF
CBM-7	Road dust from FEL operating in CBM area	PM	PM	Annual	0.24	45000	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	2.24E-02	EF
CBM-7	Road dust from FEL operating in CBM area	PM _{2.5}	PM 2.5	24 hr	0.24	70	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	3.62E-04	EF
CBM-7 QUARRY-10	Road dust from FEL operating in CBM area Road dust from FEL loading Haul Truck - Unpaved Roads	PM _{2.5}	PM 2.5	Annual 24 hr	0.24 0.24	45000 850	17 17	10	27 27	22	8.3 8.3	0.15 4.9	0.9	0.45 0.45	74.4 2615.8	98%	6.37E-04 1.54E-01	EF EF
	Road dust from FEL loading Hauf Truck - Unpaved Roads Road dust from FEL loading Hauf Truck - Unpaved Roads	PM	PM	Annual	0.24	278440	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	1.34E-01 1.39E-01	EF EF
	Road dust from FEL loading Haul Truck - Unpaved Roads	PM _{2.5}	PM 2.5	24 hr	0.24	850	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	4.39E-03	EF .
QUARRY-10	Road dust from FEL loading Haul Truck - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	0.24	278440	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	3.94E-03	EF
	, , , , , , , , , , , , , , , , , , ,						Cargo Dockers											
CD-2	Road dust from FEL moving materials into trucks	PM	PM	24 hr	1.90	25	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	3.60E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM	PM	Annual	1.90	7502	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	2.96E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	24 hr	1.90	25	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	1.02E-03	EF
CD-2 CD-2	Road dust from FEL moving materials into trucks Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	Annual 24 hr	1.90 1.90	7502 25	17 17	10	27 27	22	8.3 8.3	0.15 4.9	0. 9 0. 7	0.45	74.4 2615.8	98%	8.41E-04 3.60E-02	EF EF
CD-2	Road dust from FEL moving materials into trucks	PM	PM	Annual	1.90	7502	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	2.96E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	24 hr	1.90	25	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	1.02E-03	EF
CD-2	Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	Annual	1.90	7502	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	8.41E-04	EF
CD-2	Road dust from FEL moving materials into trucks	PM	PM	24 hr	1.90	25	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	3.60E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM	PM	Annual	1.90	7502	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	2.96E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	24 hr	1.90	25	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	1.02E-03	EF
CD-2	Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	Annual	1.90	7502	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	8.41E-04	EF
CD-2	Road dust from FEL moving materials into trucks	PM	PM	24 hr	1.90	25	17	10	27	22	8.3	4.9	0.7	0.45	2615.8	98%	3.60E-02	EF
CD-2	Road dust from FEL moving materials into trucks	PM PM _{2.5}	PM PM 2. 5	Annual 24 hr	1.90 1.90	7502 25	17 17	10	27 27	22	8.3 8.3	4.9 0.15	0.7	0.45	2615.8 74.4	98%	2.96E-02 1.02E-03	EF EF
CD-2	Road dust from FEL moving materials into trucks Road dust from FEL moving materials into trucks	PM _{2.5}	PM 2.5	Annual	1.90	7502	17	10	27	22	8.3	0.15	0.9	0.45	74.4	98%	8.41E-04	EF EF
CD-2	Road dust from FEL moving materials into trucks	F IVI 2.5	PIVI Z. 3	Alliluai	1.90		 Material Delivery and S		2.7	22	0.3	0.13	0.9	0.43	74.4	9676	8.41E-04	I Er
R2	Iron & Sand Delivery - Unpaved Roads	PM	PM	24 hr	2.40	10	19	40	59	39	8.3	4.9	0.7	0.45	3384.5	98%	2.35E-02	EF
R2	iron & Sand Delivery - Unpaved Roads	PM	PM	Annual	2.40	2978	19	40	59	39	8.3	4.9	0.7	0.45	3384.5	98%	1.92E-02	EF
R2	Iron & Sand Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	24 hr	2.40	10	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	6.68E-04	EF
R2	Iron & Sand Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	2.40	2978	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	5.45E-04	EF
R3	CBM Materials Shipping - Unpaved Roads	PM	PM	24 hr	2.56	0	39	50	89	64.3	8.3	4.9	0.7	0.45	4238.5	98%	0.00E+00	EF
R3	CBM Materials Shipping - Unpaved Roads	PM	PM PM F	Annual	2.56	11250	39	50	89	64.3	8.3	4.9	0.7	0.45	4238.5	98%	9.68E-02	EF
R3	CBM Materials Shipping - Unpaved Roads	PM _{2.5}	PM 2. 5	24 hr	2.56	0	39	50	89	64.3	8.3	0.15	0.9	0.45	120.5	98%	0.00E+00	EF
R3 R5	CBM Materials Shipping - Unpaved Roads Ash Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	Annual 24 hr	2.56 1.72	11250	39 19	50 40	89 59	64.3 39	8.3 8.3	0.15 4.9	0. 9 0. 7	0.45	120.5 3384.5	98%	2.75E-03 1.68E-03	EF EF
R5	Ash Delivery - Unpaved Roads	PM	PM	Annual	1.72	224	19	40	59	39	8.3	4.9	0.7	0.45	3384.5	98%	1.03E-03	EF
R5	Ash Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	24 hr	1.72	1	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	4.79E-05	EF
R5	Ash Delivery - Unpaved Roads	PM ₂₅	PM 2.5	Annual	1.72	224	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	2.94E-05	EF
R6-1	LCF Delivery - Unpaved Roads (Existing)	PM	PM	24 hr	1.31	5	19	20	39	29	8.3	4.9	0.7	0.45	2962.1	98%	5.60E-03	EF
R6-1	LCF Delivery - Unpaved Roads (Existing)	PM	PM	Annual	1.31	1650	19	20	39	29	8.3	4.9	0.7	0.45	2962.1	98%	5.06E-03	EF
R6-1	LCF Delivery - Unpaved Roads (Existing)	PM _{2.5}	PM 2.5	24 hr	1.31	5	19	20	39	29	8.3	0.15	0.9	0.45	84.2	98%	1.59E-04	EF
R6-1	LCF Delivery - Unpaved Roads (Existing)	PM _{2.5}	PM 2.5	Annual	1.31	1650	19	20	39	29	8.3	0.15	0.9	0.45	84.2	98%	1.44E-04	EF
R6-2	ALCF Delivery - Unpaved Roads (Future)	PM	PM	24 hr	1.31	60	19	20	39	29	8.3	4.9	0.7	0.45	2962.1	98%	6.72E-02	EF
R6-2 R6-2	ALCF Delivery - Unpaved Roads (Future)	PM PM	PM PM 2. 5	Annual 24 hr	1.31	6600 60	19	20	39	29	8.3	4.9	0.7	0.45	2962.1 84.2	98%	2.03E-02	EF EF
	ALCF Delivery - Unpaved Roads (Future) ALCF Delivery - Unpaved Roads (Future)	PM _{2.5}	PM 2.5	Annual	1.31 1.31	6600	19 19	20	39 39	29 29	8.3 8.3	0.15 0.15	0.9	0.45	84.2	98%	1.91E-03 5.76E-04	EF EF
	ALCF Delivery - Unpaved Roads (Future) - Alternative Route	PM	PM PM	24 hr	2.61	60	19	20	39	29	8.3	4.9	0.9		2962.1	98%	1.34E-01	EF EF
	ALCF Delivery - Unpaved Roads (Future) - Alternative Route	PM	PM	Annual	2.61	6600	19	20	39	29	8.3	4.9	0.7		2962.1	98%	4.05E-02	EF
R6-2A	ALCF Delivery - Unpaved Roads (Future) - Alternative Route	PM _{2.5}	PM 2.5	24 hr	2.61	60	19	20	39	29	8.3	0.15	0.9	0.45	84.2	98%	3.82E-03	EF
R6-2A	ALCF Delivery - Unpaved Roads (Future) - Alternative Route	PM _{2.5}	PM 2.5	Annual	2.61	6600	19	20	39	29	8.3	0.15	0.9	0.45	84.2	98%	1.15E-03	EF
	Overburden Delivery - Unpaved Roads	PM	PM	24 hr	6.23	8	39	50	89	64.3	8.3	4.9	0.7	0.45	4238.5	98%	6.11E-02	EF
	Overburden Delivery - Unpaved Roads	PM	PM	Annual	6.23	2382	39	50	89	64.3	8.3	4.9	0.7	0.45	4238.5	98%	4.99E-02	EF
	Overburden Delivery - Unpaved Roads	PM _{2.5}	PM 2. 5	24 hr	6.23	8	39	50	89	64.3	8.3	0.15	0.9	0.45	120.5	98%	1.74E-03	EF
	Overburden Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	6.23	2382	39	50	89	64.3	8.3	0.15	0.9	0.45	120.5	98%	1.42E-03	EF EF
R8 R8	Haul Truck to Primary Crusher - Unpaved Roads Haul Truck to Primary Crusher - Unpaved Roads	PM PM	PM PM	24 hr Annual	3.54 3.54	170 55688	39 39	50 50	89 89	64.3 64.3	8.3 8.3	4.9 4.9	0. 7 0. 7	0.45 0.45	4238.5 4238.5	98%	7.38E-01 6.62E-01	EF EF
	Haul Truck to Primary Crusher - Unpaved Roads	PM _{2.5}	PM 2. 5	24 hr	3.54	170	39	50	89	64.3	8.3	0.15	0.7	0.45	120.5	98%	2.10E-02	EF
	Haul Truck to Primary Crusher - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	3.54	55688	39	50	89	64.3	8.3	0.15	0.9	0.45	120.5	98%	1.88E-02	EF
	Fuel Delivery - Unpaved Roads	PM	PM	24 hr	1.64	14	19	40	59	39	8.3	4.9	0.7	0.45	3384.5	98%	2.21E-02	EF
R9	Fuel Delivery - Unpaved Roads	PM	PM	Annual	1.64	4465	19	40	59	39	8.3	4.9	0.7		3384.5	98%	1.97E-02	EF
R9	Fuel Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	24 hr	1.64	14	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	6.29E-04	EF
R9	Fuel Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	1.64	4465	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	5.59E-04	EF
	CKD/Gypsum Delivery - Unpaved Roads	PM	PM	24 hr	1.57	175	19	40	59	39	8.3	4.9	0.7		3384.5	98%	2.69E-01	EF
	CKD/Gypsum Delivery - Unpaved Roads	PM	PM PMAR	Annual	1.57	57750	19	40	59	39	8.3	4.9	0.7		3384.5	98%	2.44E-01	EF
	CKD/Gypsum Delivery - Unpaved Roads	PM _{2.5}	PM 2. 5	24 hr	1.57	175	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	7.66E-03	EF
R10	CKD/Gypsum Delivery - Unpaved Roads	PM _{2.5}	PM 2.5	Annual	1.57	57750	19	40	59	39	8.3	0.15	0.9	0.45	96.2	98%	6.93E-03	EF

⁻ This emission factor calculation and constant values for unpaved road dust are from the US EPA AP42 document titled "13.2.2 Unpaved Roads".

- A 98% control efficiency was assumed because the roadways are watered regularly.

Road Dust Emission Rate [g/s] = E [g/VMT] x Number of Vehicles x Distance Travelled [miles] / Averaging Period Converted to seconds [years to seconds/days to seconds/hours to seconds]

Paved Road Emission Factor E (g/VMT) = k * ((sL)^0.91 * (W)^1.02)

sL	<500	50-5000	5000-10000	>10000
Roadway Average Daily Traffic (ADT)	0.6	0.2	0.06	0.03

Source I.D.	Activity	Contaminant	CAS No.	Averaging Period	Particle Size Multiplier (k)	Round Trip Distance (km)	Average Daily Traffic (ADT)	Number of Trips	Empty Truck Weight (tonne)	Load Weight (tonne)	Loaded Truck Weight (tonne)	Mean Vehicle Weight (W) (tonne)	Emission Factor (g/VKT)	Uncontrolled Emission Rate (g/s)	Additional Control Efficiency (%)	Controlled Emission Rate (g/s)	Data Quality	Estimation Technique
		-					Cement Plant											
RAWSILO-10	Road dust from FEL transferring sand to feed hopper	PM	PM	24 hr	5.24	0.10	<500	8	17	10	27	22	85.1	7.88E-04	50%	3.94E-04	Α	EF
RAWSILO-10	Road dust from FEL transferring sand to feed hopper	PM	PM	Annual	5.24	0.10	<500	2085	17	10	27	22	85.1	5.63E-04	50%	2.81E-04	Α	EF
RAWSILO-10	Road dust from FEL transferring sand to feed hopper	PM _{2.5}	PM2.5	24 hr	0.25	0.10	<500	8	17	10	27	22	4.1	3.76E-05	50%	1.88E-05	D	EF
RAWSILO-10	Road dust from FEL transferring sand to feed hopper	PM _{2.5}	PM2.5	Annual	0.25	0.10	<500	2085	17	10	27	22	4.1	2.68E-05	50%	1.34E-05	D	EF
						Material	Delivery and Sh	pping										
R1-1	Iron & Sand Delivery - Paved Roads	PM	PM	24 hr	5.24	3.48	<500	10	19	40	59	39	152.6	6.15E-02	50%	3.07E-02	Α	EF
R1-1	Iron & Sand Delivery - Paved Roads	PM	PM	Annual	5.24	3.48	<500	2978	19	40	59	39	152.6	5.01E-02	50%	2.51E-02	Α	EF
R1-1	Iron & Sand Delivery - Paved Roads	PM _{2.5}	PM2.5	24 hr	0.25	3.48	<500	10	19	40	59	39	7.3	2.93E-03	50%	1.47E-03	D	EF
R1-1	Iron & Sand Delivery - Paved Roads	PM _{2.5}	PM2.5	Annual	0.25	3.48	<500	2978	19	40	59	39	7.3	2.39E-03	50%	1.20E-03	D	EF
R1-2	CBM Materials Shipping - Paved Roads	PM	PM	Annual	5.24	3.48	<500	11250	19	40	59	39	152.6	1.89E-01	50%	9.47E-02	Α	EF
R1-2	CBM Materials Shipping - Paved Roads	PM _{2.5}	PM2.5	Annual	0.25	3.48	<500	11250	19	40	59	39	7.3	9.04E-03	50%	4.52E-03	D	EF
R4-1	Ash Delivery - Paved Roads	PM	PM	24 hr	5.24	2.56	<500	1	19	40	59	39	152.6	4.52E-03	50%	2.26E-03	Α	EF
R4-1	Ash Delivery - Paved Roads	PM	PM	Annual	5.24	2.56	<500	224	19	40	59	39	152.6	2.77E-03	50%	1.39E-03	Α	EF
R4-1	Ash Delivery - Paved Roads	PM _{2.5}	PM2.5	24 hr	0.25	2.56	<500	1	19	40	59	39	7.3	2.16E-04	50%	1.08E-04	D	EF
R4-1	Ash Delivery - Paved Roads	PM _{2.5}	PM2.5	Annual	0.25	2.56	<500	224	19	40	59	39	7.3	1.32E-04	50%	6.62E-05	D	EF
R4-2	LCF Delivery - Paved Roads (Existing)	PM	PM	24 hr	5.24	2.56	<500	5	19	20	39	29	112.8	1.67E-02	50%	8.35E-03	Α	EF
R4-2	LCF Delivery - Paved Roads (Existing)	PM	PM	Annual	5.24	2.56	<500	1650	19	20	39	29	112.8	1.51E-02	50%	7.55E-03	Α	EF
R4-2	LCF Delivery - Paved Roads (Existing)	PM _{2.5}	PM2.5	24 hr	0.25	2.56	<500	5	19	20	39	29	5.4	7.97E-04	50%	3.99E-04	D	EF
R4-2	LCF Delivery - Paved Roads (Existing)	PM _{2.5}	PM2.5	Annual	0.25	2.56	<500	1650	19	20	39	29	5.4	7.21E-04	50%	3.60E-04	D	EF
R4-3	ALCF Delivery - Paved Roads (Future)	PM	PM	24 hr	5.24	2.56	<500	60	19	20	39	29	112.8	2.01E-01	50%	1.00E-01	Α	EF
R4-3	ALCF Delivery - Paved Roads (Future)	PM	PM	Annual	5.24	2.56	<500	6600	19	20	39	29	112.8	6.04E-02	50%	3.02E-02	Α	EF
R4-3	ALCF Delivery - Paved Roads (Future)	PM _{2.5}	PM2.5	24 hr	0.25	2.56	<500	60	19	20	39	29	5.4	9.57E-03	50%	4.78E-03	D	EF
R4-3	ALCF Delivery - Paved Roads (Future)	PM _{2.5}	PM2.5	Annual	0.25	2.56	<500	6600	19	20	39	29	5.4	2.88E-03	50%	1.44E-03	D	EF
R4-3A	ALCF Delivery - Paved Roads (Future) - Alternative Route	PM	PM	24 hr	5.24	3.50	<500	60	19	20	39	29	112.8	2.74E-01	50%	1.37E-01	Α	EF
R4-3A	ALCF Delivery - Paved Roads (Future) - Alternative Route	PM	PM	Annual	5.24	3.50	<500	6600	19	20	39	29	112.8	8.25E-02	50%	4.13E-02	Α	EF
R4-3A	ALCF Delivery - Paved Roads (Future) - Alternative Route	PM _{2.5}	PM2.5	24 hr	0.25	3.50	<500	60	19	20	39	29	5.4	1.31E-02	50%	6.53E-03	D	EF
R4-3A	ALCF Delivery - Paved Roads (Future) - Alternative Route	PM _{2.5}	PM2.5	Annual	0.25	3.50	<500	6600	19	20	39	29	5.4	3.94E-03	50%	1.97E-03	D	EF
R11	Finished Cement Shipping - Paved Roads	PM	PM	24 hr	5.24	3.32	<500	175	19	40	59	39	152.6	1.03E+00	50%	5.13E-01	Α	EF
R11	Finished Cement Shipping - Paved Roads	PM	PM	Annual	5.24	3.32	<500	57750	19	40	59	39	152.6	9.28E-01	50%	4.64E-01	А	EF
R11	Finished Cement Shipping - Paved Roads	PM _{2.5}	PM2.5	24 hr	0.25	3.32	<500	175	19	40	59	39	7.3	4.90E-02	50%	2.45E-02	D	EF
R11	Finished Cement Shipping - Paved Roads	PM _{2.5}	PM2.5	Annual	0.25	3.32	<500	57750	19	40	59	39	7.3	4.43E-02	50%	2.21E-02	D	EF
Notes:	11 0	1	l .	I	I	I	l .		1	1	<u>I</u>	<u> </u>		11		· · · · · · · ·		

Notes:

- This emission factor calculation and constant values for paved road dust are from the US EPA AP42 document titled "13.2.1 Paved Roads".
- A 50% control efficiency was assumed because the paved roads are vaccuumed/swept regularly .

Tailpipe Travelling Emission Rate [g/s] = Number of Vehicles x Distance Travelled per Vehicles [km] x 0.621 [miles/ km] x Travelling Emission Factor [g/VKT] / Averaging Period Converted to Seconds [years to seconds/days to seconds/hours to seconds]

					Round Trip	Idling Time	Idling	Number of Trucks	Travelling	Emission Rate		Estimation
Source ID	Source Description	Contaminant	CAS No.	Averaging Period	Distance (km)		"Sped" (km/hr)	during Averaging Period	Emission Factor (g/VKT)	(g/s)	Data Quality	Technique
T1-1	Iron & Sand Delivery - Tailpipe	PM	PM	24 hr	al Delivery and	n/a	n/a	10	5.90E-01	2.38E-04	Above Average	MOVESEF
T1-2 T2	CBM Materials Shipping - Tailpipe Iron & Sand Delivery - Tailpipe	PM PM	PM PM	24 hr 24 hr	3.48 2.40	n/a n/a	n/a n/a	0 10	5.90E-01 5.90E-01	0.00E+00 1.64E-04	Above Average Above Average	M OVES EF
T3 T4-1	CBM Materials Shipping - Tailpipe Ash Delivery - Tailpipe	PM PM	PM PM	24 hr 24 hr	2.56 2.56	n/a n/a	n/a n/a	0	5.90E-01 5.90E-01	0.00E+00 1.75E-05	Above Average Above Average	M OVES EF M OVES EF
T4-2 T4-3	LCF Delivery - Tailpipe (Existing) ALCF Delivery - Tailpipe (Future)	PM PM	PM PM	24 hr 24 hr	2.56 2.56	n/a n/a	n/a n/a	5 60	5.90E-01 5.90E-01	8.74E-05 1.05E-03	Above Average Above Average	M OVES EF M OVES EF
T4-3A	ALCF Delivery - Tailpipe (Future) - Alternative	PM	PM	24 hr	3.50	n/a	n/a	60	5.90E-01	1.43E-03	Above Average	M OVES EF
T5 T6-1	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	PM PM	PM PM	24 hr 24 hr	1.72 1.31	n/a n/a	n/a n/a	1 5	5.90E-01 5.90E-01	1.17E-05 4.46E-05	Above Average Above Average	M OVES EF M OVES EF
T6-2 T6-2A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	PM PM	PM PM	24 hr 24 hr	1.31 2.61	n/a n/a	n/a n/a	60 60	5.90E-01 5.90E-01	5.35E-04 1.07E-03	Above Average Above Average	M OVES EF M OVES EF
T7 T8	Overburden Delivery - Tailpipe Haul Truck to Primary Crusher - Tailpipe	PM PM	PM PM	24 hr 24 hr	6.23 3.54	n/a n/a	n/a n/a	8 170	5.90E-01 5.90E-01	3.40E-04 4.11E-03	Above Average Above Average	MOVES EF MOVES EF
T9	Fuel Delivery - Tailpipe	PM	PM	24 hr	1.64	n/a	n/a	14	5.90E-01	1.54E-04	Above Average	MOVESEF
T10 T11	CKD/Gypsum Delivery - Tailpipe Finished Cement Shipping - Tailpipe	PM PM	PM PM	24 hr 24 hr	1.57 3.32	n/a n/a	n/a n/a	175 175	5.90E-01 5.90E-01	1.88E-03 3.97E-03	Above Average Above Average	M OVES EF M OVES EF
11 T1-1	Finished Cement Shipping - Idling Iron & Sand Delivery - Tailpipe	PM PM	PM PM	24 hr Annual	n/a 3.48	0.20 n/a	4.02 n/a	175 2978	2.33E+00 5.90E-01	3.80E-03 1.94E-04	Above Average Above Average	M OVES EF M OVES EF
T1-2 T2	CBM Materials Shipping - Tailpipe Iron & Sand Delivery - Tailpipe	PM PM	PM PM	Annual Annual	3.48 2.40	n/a n/a	n/a n/a	11250 2978	5.90E-01 5.90E-01	7.32E-04 1.34E-04	Above Average Above Average	MOVES EF MOVES EF
T3	CBM Materials Shipping - Tailpipe Ash Delivery - Tailpipe	PM PM	PM PM	Annual Annual	2.56	n/a n/a	n/a n/a	11250 224	5.90E-01 5.90E-01	5.39E-04 1.07E-05	Above Average Above Average	M OVES EF M OVES EF
T4-2	LCF Delivery - Tailpipe (Existing)	PM	PM	Annual	2.56	n/a	n/a	1650	5.90E-01	7.90E-05	Above Average	M OVES EF
T4-3 T4-3A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	PM PM	PM PM	Annual Annual	2.56 3.50	n/a n/a	n/a n/a	6600 6600	5.90E-01 5.90E-01	3.16E-04 4.32E-04	Above Average Above Average	M OVES EF M OVES EF
T5 T6-1	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	PM PM	PM PM	Annual Annual	1.72 1.31	n/a n/a	n/a n/a	224 1650	5.90E-01 5.90E-01	7.21E-06 4.03E-05	Above Average Above Average	M OVES EF M OVES EF
T6-2 T6-2A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	PM PM	PM PM	Annual Annual	1.31 2.61	n/a n/a	n/a n/a	6600 6600	5.90E-01 5.90E-01	1.61E-04 3.23E-04	Above Average Above Average	M OVES EF M OVES EF
T7	Overburden Delivery - Tailpipe	PM	PM	Annual	6.23	n/a	n/a	2382	5.90E-01	2.78E-04	Above Average	M OVES EF
T8 T9	Haul Truck to Primary Crusher - Tailpipe Fuel Delivery - Tailpipe	PM PM	PM PM	Annual Annual	3.54 1.64	n/a n/a	n/a n/a	55688 4465	5.90E-01 5.90E-01	3.69E-03 1.37E-04	Above Average Above Average	MOVES EF MOVES EF
T10 T11	CKD/Gypsum Delivery - Tailpipe Finished Cement Shipping - Tailpipe	PM PM	PM PM	Annual Annual	1.57 3.32	n/a n/a	n/a n/a	57750 57750	5.90E-01 5.90E-01	1.70E-03 3.59E-03	Above Average Above Average	M OVES EF M OVES EF
11 T1-1	Finished Cement Shipping - Idling Iron & Sand Delivery - Tailpipe	PM PM _{2.5}	PM PM2.5	Annual 24 hr	n/a 3.48	0.20 n/a	4.02 n/a	57750 10	2.33E+00 2.11E-01	3.44E-03 8.49E-05	Above Average Above Average	M OVES EF M OVES EF
T1-2 T2	CBM Materials Shipping - Tailpipe Iron & Sand Delivery - Tailpipe	PM _{2.5}	PM2.5	24 hr 24 hr	3.48	n/a n/a	n/a n/a	0	2.11E-01 2.11E-01	0.00E+00 5.85E-05	Above Average Above Average	M OVES EF M OVES EF
T3	CBM Materials Shipping - Tailpipe	P M _{2.5}	PM2.5	24 hr	2.56	n/a	n/a	0	2.11E-01	0.00E+00	Above Average	MOVESEF
T4-1 T4-2	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	P M _{2.5} P M _{2.5}	PM2.5 PM2.5	24 hr 24 hr	2.56 2.56	n/a n/a	n/a n/a	1 5	2.11E-01 2.11E-01	6.24E-06 3.12E-05	Above Average Above Average	M OVES EF M OVES EF
T4-3 T4-3A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	P M _{2.5}	PM2.5 PM2.5	24 hr 24 hr	2.56 3.50	n/a n/a	n/a n/a	60 60	2.11E-01 2.11E-01	3.75E-04 5.12E-04	Above Average Above Average	M OVES EF M OVES EF
T5 T6-1	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	P M _{2.5} P M _{2.5}	PM2.5 PM2.5	24 hr 24 hr	1.72 1.31	n/a n/a	n/a n/a	1 5	2.11E-01 2.11E-01	4.19E-06 1.59E-05	Above Average Above Average	M OVES EF M OVES EF
T6-2	ALCF Delivery - Tailpipe (Future)	PM _{2.5}	PM2.5	24 hr	1.31	n/a	n/a	60	2.11E-01	1.91E-04	Above Average	MOVESEF
T6-2A T7	ALCF Delivery - Tailpipe (Future) - Alternative Overburden Delivery - Tailpipe	PM _{2.5} PM _{2.5}	PM2.5 PM2.5	24 hr 24 hr	2.61 6.23	n/a n/a	n/a n/a	60 8	2.11E-01 2.11E-01	3.82E-04 1.22E-04	Above Average Above Average	M OVES EF M OVES EF
T8 T9	Haul Truck to Primary Crusher - Tailpipe Fuel Delivery - Tailpipe	P M _{2.5}	PM2.5 PM2.5	24 hr 24 hr	3.54 1.64	n/a n/a	n/a n/a	170 14	2.11E-01 2.11E-01	1.47E-03 5.50E-05	Above Average Above Average	M OVES EF M OVES EF
T10 T11	CKD/Gypsum Delivery - Tailpipe Finished Cement Shipping - Tailpipe	PM _{2.5} PM _{2.5}	PM2.5 PM2.5	24 hr 24 hr	1.57 3.32	n/a n/a	n/a n/a	175 175	2.11E-01 2.11E-01	6.71E-04 1.42E-03	Above Average Above Average	M OVES EF M OVES EF
11 T1-1	Finished Cement Shipping - Idling Iron & Sand Delivery - Tailpipe	PM _{2.5}	PM2.5	24 hr	n/a 3.48	0.20 n/a	4.02	175 2978	1. 15E+00 2. 11E-01	1.88E-03 6.92E-05	Above Average	MOVES EF MOVES EF
T1-2	CBM Materials Shipping - Tailpipe	P M _{2.5}	PM2.5	Annual Annual	3.48	n/a	n/a n/a	11250	2.11E-01	2.62E-04	Above Average Above Average	MOVESEF
T2 T3	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	P M _{2.5} P M _{2.5}	PM2.5 PM2.5	Annual Annual	2.40 2.56	n/a n/a	n/a n/a	2978 11250	2.11E-01 2.11E-01	4.78E-05 1.92E-04	Above Average Above Average	M OVES EF M OVES EF
T4-1 T4-2	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	P M _{2.5}	PM2.5 PM2.5	Annual Annual	2.56 2.56	n/a n/a	n/a n/a	224 1650	2.11E-01 2.11E-01	3.83E-06 2.82E-05	Above Average Above Average	M OVES EF M OVES EF
T4-3 T4-3A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	PM _{2.5} PM _{2.5}	PM2.5 PM2.5	Annual Annual	2.56 3.50	n/a n/a	n/a n/a	6600 6600	2.11E-01 2.11E-01	1.13E-04 1.54E-04	Above Average Above Average	MOVES EF MOVES EF
T5 T6-1	Ash Delivery - Tailpipe	PM _{2.5}	PM2.5	Annual	1.72 1.31	n/a	n/a	224 1650	2.11E-01 2.11E-01	2.57E-06 1.44E-05	Above Average	MOVESEF
T6-2	LCF Delivery - Tailpipe (Existing) ALCF Delivery - Tailpipe (Future)	P M _{2.5}	PM2.5 PM2.5	Annual Annual	1.31	n/a n/a	n/a n/a	6600	2.11E-01	5.76E-05	Above Average Above Average	M OVES EF M OVES EF
T6-2A T7	ALCF Delivery - Tailpipe (Future) - Alternative Overburden Delivery - Tailpipe	P M _{2.5} P M _{2.5}	PM2.5 PM2.5	Annual Annual	2.61 6.23	n/a n/a	n/a n/a	6600 2382	2.11E-01 2.11E-01	1.15E-04 9.92E-05	Above Average Above Average	M OVES EF M OVES EF
T8 T9	Haul Truck to Primary Crusher - Tailpipe Fuel Delivery - Tailpipe	P M _{2.5}	PM2.5 PM2.5	Annu al Annu al	3.54 1.64	n/a n/a	n/a n/a	55688 4465	2.11E-01 2.11E-01	1.32E-03 4.90E-05	Above Average Above Average	M OVES EF M OVES EF
T10 T11	CKD/Gypsum Delivery - Tailpipe Finished Cement Shipping - Tailpipe	P M _{2.5} P M _{2.5}	PM2.5 PM2.5	Annual Annual	1.57 3.32	n/a n/a	n/a n/a	57750 57750	2.11E-01 2.11E-01	6.07E-04 1.28E-03	Above Average Above Average	MOVES EF MOVES EF
11	Finished Cement Shipping - Idling	P M _{2.5}	PM 2.5	Annual	n/a	0.20	4.02	57750	1.15E+00	1.70E-03	Above Average	MOVESEF
T1-1 T1-2	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	3.48 3.48	n/a n/a	n/a n/a	0	3.72E+00 3.72E+00	3.60E-03 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T2 T3	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	2.40 2.56	n/a n/a	n/a n/a	0	3.72E+00 3.72E+00	2.48E-03 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T4-1 T4-2	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	2.56 2.56	n/a n/a	n/a n/a	1 1	3.72E+00 3.72E+00	2.65E-03 2.65E-03	Above Average Above Average	MOVES EF MOVES EF
T4-3 T4-3A	ALCF Delivery - Tailpipe (Future) ALCF Delivery - Tailpipe (Future) - Alternative	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	2.56 3.50	n/a n/a	n/a n/a	3	3.72E+00 3.72E+00	7.95E-03 1.09E-02	Above Average Above Average	MOVES EF MOVES EF
T5	Ash Delivery - Tailpipe	NO ₂	10102-44-0	1 hr	1.72	n/a	n/a	1	3.72E+00	1.78E-03	Above Average	MOVESEF
T6-1 T6-2	LCF Delivery - Tailpipe (Existing) ALCF Delivery - Tailpipe (Future)	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	1.31 1.31	n/a n/a	n/a n/a	3	3.72E+00 3.72E+00	1.35E-03 4.06E-03	Above Average Above Average	MOVES EF MOVES EF
T6-2A T7	ALCF Delivery - Tailpipe (Future) - Alternative Overburden Delivery - Tailpipe	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	2.61 6.23	n/a n/a	n/a n/a	3 1	3.72E+00 3.72E+00	8.11E-03 6.45E-03	Above Average Above Average	MOVES EF MOVES EF
T8 T9	Haul Truck to Primary Crusher - Tailpipe Fuel Delivery - Tailpipe	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	3.54 1.64	n/a n/a	n/a n/a	8	3.72E+00 3.72E+00	2.93E-02 1.27E-03	Above Average Above Average	MOVES EF MOVES EF
T10	CKD/Gypsum Delivery - Tailpipe	NO ₂ NO ₂	10102-44-0	1 hr	1.57	n/a	n/a	8	3.72E+00	1.22E-02	Above Average	MOVESEF
T11	Finished Cement Shipping - Tailpipe Finished Cement Shipping - Idling	NO ₂	10102-44-0 10102-44-0	1 hr 1 hr	3.32 n/a	n/a 0.20	n/a 4.02	8	3.72E+00 2.23E+01	2.58E-02 3.74E-02	Above Average Above Average	MOVES EF MOVES EF
T1-1 T1-2	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	NO ₂	10102-44-0 10102-44-0	24 hr 24 hr	3.48 3.48	n/a n/a	n/a n/a	10 0	3.72E+00 3.72E+00	1.50E-03 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T2 T3	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	NO ₂	10102-44-0 10102-44-0	24 hr 24 hr	2.40 2.56	n/a n/a	n/a n/a	10 0	3.72E+00 3.72E+00	1.03E-03 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T4-1 T4-2	Ash Delivery - Tailpipe LCF Delivery - Tailpipe (Existing)	NO ₂ NO ₂	10102-44-0 10102-44-0	24 hr 24 hr	2.56	n/a n/a	n/a n/a	1 5	3.72E+00 3.72E+00	1.10E-04 5.52E-04	Above Average Above Average	MOVES EF MOVES EF
T4-3	ALCF Delivery - Tailpipe (Future)	NO ₂	10102-44-0	24 hr	2.56	n/a	n/a	60	3.72E+00	6.62E-03	Above Average	MOVESEF
T5	ALCF Delivery - Tailpipe (Future) - Alternative Ash Delivery - Tailpipe	NO ₂	10102-44-0 10102-44-0	24 hr	3.50 1.72	n/a n/a	n/a n/a	60 1	3.72E+00 3.72E+00	9.05E-03 7.42E-05	Above Average Above Average	MOVES EF MOVES EF
T6-1 T6-2	LCF Delivery - Tailpipe (Existing) ALCF Delivery - Tailpipe (Future)	NO ₂	10102-44-0 10102-44-0	24 hr 24 hr	1.31 1.31	n/a n/a	n/a n/a	5 60	3.72E+00 3.72E+00	2.82E-04 3.38E-03	Above Average Above Average	MOVES EF MOVES EF
T6-2A T7	ALCF Delivery - Tailpipe (Future) - Alternative Overburden Delivery - Tailpipe	NO ₂	10102-44-0 10102-44-0		2.61 6.23	n/a n/a	n/a n/a	60 8	3.72E+00 3.72E+00	6.76E-03 2.15E-03	Above Average Above Average	MOVES EF MOVES EF
T8 T9	Haul Truck to Primary Crusher - Tailpipe Fuel Delivery - Tailpipe	NO ₂ NO ₂	10102-44-0 10102-44-0	24 hr	3.54 1.64	n/a	n/a	170	3.72E+00 3.72E+00	2.59E-02 9.73E-04	Above Average Above Average	MOVES EF MOVES EF
T10	CKD/Gypsum Delivery - Tailpipe	NO ₂	10102-44-0	24 hr	1.57	n/a n/a	n/a n/a	14 175	3.72E+00	1.19E-02	Above Average	MOVES EF
T11	Finished Cement Shipping - Tailpipe Finished Cement Shipping - Idling	NO ₂	10102-44-0 10102-44-0	24 hr 24 hr	3.32 n/a	n/a 0.20	n/a 4.02	175 175	3.72E+00 2.23E+01	2.51E-02 3.63E-02	Above Average Above Average	MOVES EF MOVES EF
T1-1 T1-2	Iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	SO ₂ SO ₂	7446-09-5 7446-09-5	1 hr 1 hr	3.48 3.48	n/a n/a	n/a n/a	1 0	1.40E-02 1.40E-02	1.36E-05 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T2 T3	iron & Sand Delivery - Tailpipe CBM Materials Shipping - Tailpipe	SO ₂	7446-09-5 7446-09-5	1 hr 1 hr	2.40	n/a n/a	n/a n/a	1 0	1.40E-02 1.40E-02	9.37E-06 0.00E+00	Above Average Above Average	MOVES EF MOVES EF
T4-1	Ash Delivery - Tailpipe	SO ₂ SO ₂	7446-09-5	1 hr	2.56	n/a	n/a	1	1.40E-02	9.99E-06	Above Average	MOVESEF
T4-2 T4-3	LCF Delivery - Tailpipe (Existing) ALCF Delivery - Tailpipe (Future)	SO ₂	7446-09-5 7446-09-5	1 hr 1 hr	2.56 2.56	n/a n/a	n/a n/a	3	1.40E-02 1.40E-02	9.99E-06 3.00E-05	Above Average Above Average	MOVES EF MOVES EF
T4-3A T5	ALCF Delivery - Tailpipe (Future) - Alternative Ash Delivery - Tailpipe	SO ₂	7446-09-5 7446-09-5	1 hr 1 hr	3.50 1.72	n/a n/a	n/a n/a	3 1	1.40E-02 1.40E-02	4.09E-05 6.71E-06	Above Average Above Average	MOVES EF MOVES EF
T6-1	LCF Delivery - Tailpipe (Existing)	SO ₂	7446-09-5	1 hr	1.31	n/a	n/a	1	1.40E-02	5.10E-06	Above Average	MOVES EF

Text	Source ID	Source Description	Contaminant	CAS No.	Averaging Period	Round Trip Distance (km)	Idling Time (h)	Idling "Sped" (km/hr)	Number of Trucks during Averaging Period	Travelling Emission Factor (g/VKT)	Emission Rate (g/s)	Data Quality	Estimation Technique
Description of which Column Colum	T6-2A	ALCF Delivery - Tailpipe (Future) - Alternative	SO ₂	7446-09-5	1 hr	2.61	n/a	n/a	3	1.40E-02	3.06E-05	Above Average	MOVES EF MOVES EF
Column	T8	Haul Truck to Primary Crusher - Tailpipe	SO ₂	7446-09-5	1 hr	3.54	n/a	n/a	8	1.40E-02	1.11E-04	Above Average	MOVESEF
11 1. 1. 1. 1. 1. 1. 1.	T10	CKD/Gypsum Delivery - Tailpipe	SO ₂	7446-09-5	1 hr	1.57	n/a	n/a	8	1.40E-02	4.60E-05	Above Average	MOVES EF MOVES EF
T.	11	Finished Cement Shipping - Idling	SO ₂	7446-09-5	1 hr	n/a	0.20	4.02	8	7.75E-02	1.30E-04	Above Average	MOVES EF MOVES EF
1. Proceedings Procedings Proceedings Proceedings Proceedings Proceedings Procedings Proceedings Proceedings Procedings Procedings Proceedings Procedings	T1-2	CBM Materials Shipping - Tailpipe	SO ₂	7446-09-5	24 hr	3.48	n/a	n/a	0	1.40E-02	0.00E+00	Above Average	MOVES EF MOVES EF
The content of the	T3	CBM Materials Shipping - Tailpipe				2.56	n/a	n/a					MOVES EF MOVES EF
Box Applications Co. A													MOVES EF MOVES EF
Section Company Comp	T5	Ash Delivery - Tailpipe	SO ₂	7446-09-5	24 hr	1.72	n/a		1				MOVES EF MOVES EF
20	T6-2	ALCF Delivery - Tailpipe (Future)	SO ₂	7446-09-5	24 hr	1.31	n/a	n/a	60	1.40E-02	1.27E-05	Above Average	MOVES EF MOVES EF
The process of the	T7	Overburden Delivery - Tailpipe	SO ₂	7446-09-5	24 hr	6.23	n/a	n/a	8	1.40E-02	8.11E-06	Above Average	MOVES EF MOVES EF
The content traps of the present and the pre	T9	Fuel Delivery - Tailpipe	SO ₂	7446-09-5	24 hr	1.64	n/a	n/a	14	1.40E-02	3.67E-06	Above Average	MOVESEF
The Content of the	T11	Finished Cement Shipping - Tailpipe	SO ₂	7446-09-5	24 hr	3.32	n/a	n/a	175	1.40E-02	9.46E-05	Above Average	MOVESEF
Description Control	T1-1	Iron & Sand Delivery - Tailpipe	SO ₂	7446-09-5	Annual	3.48	n/a	n/a	2978	1.40E-02	4.62E-06	Above Average	MOVESEF
H.	T2	Iron & Sand Delivery - Tailpipe	SO ₂	7446-09-5	Annual	2.40	n/a	n/a	2978	1.40E-02	3.18E-06	Above Average	MOVESEF
Tell Miller Tell Tell	T4-1	Ash Delivery - Tailpipe	SO ₂	7446-09-5	Annual	2.56	n/a	n/a	224	1.40E-02	2.55E-07	Above Average	MOVES EF MOVES EF
The The Company The The Company The	T4-3	ALCF Delivery - Tailpipe (Future)	SO ₂	7446-09-5	Annual	2.56	n/a	n/a	6600	1.40E-02	7.53E-06	Above Average	MOVES EF MOVES EF
Section Company Topic Prince decrease Section Section	T5	Ash Delivery - Tailpipe			1	1.72	n/a	n/a			1.72E-07	Above Average	MOVES EF MOVES EF
The first case of count of county with colors of the color of the co			SO ₂										MOVES EF MOVES EF
Tell Collegement Congress Collegement Collegemen	T8		SO ₂		1	3.54							MOVES EF MOVES EF
The contract Compact Paging and g	T10	CKD/Gypsum Delivery - Tailpipe	SO ₂	7446-09-5	1	1.57	n/a	n/a	57750	1.40E-02	4.04E-05		MOVES EF MOVES EF
Text	11	Finished Cement Shipping - Idling	SO ₂	7446-09-5	Annual	n/a	0.20	4.02	57750	7.75E-02	1.14E-04	Above Average	MOVES EF MOVES EF
The control of the property of the green control of the property of the prop	T1-2	CBM Materials Shipping - Tailpipe	Benzene	71-43-2	24 hr	3.48	n/a	n/a	0	7. 19E-03	0.00E+00	Above Average	MOVES EF MOVES EF
15.3 M.C. Peters - Link prichates Peters	T3	CBM Materials Shipping - Tailpipe	Benzene	71-43-2	24 hr	2.56	n/a	n/a	0	7. 19E-03	0.00E+00	Above Average	MOVESEF
1.00 2.00	T4-2	LCF Delivery - Tailpipe (Existing)	Benzene	71-43-2	24 hr	2.56	n/a	n/a	5	7. 19E-03	1.07E-06	Above Average	MOVESEF
Test Contemp. Test pick register Test pick re	T4-3A	ALCF Delivery - Tailpipe (Future) - Alternative	Benzene	71-43-2	24 hr	3.50	n/a	n/a	60	7. 19E-03	1.75E-05	Above Average	MOVESEF
To Dec Control Purple Pu	T6-1	LCF Delivery - Tailpipe (Existing)	Benzene	71-43-2	24 hr	1.31	n/a	n/a	5	7. 19E-03	5.44E-07	Above Average	MOVESEF
Tell	T6-2A	ALCF Delivery - Tailpipe (Future) - Alternative	Benzene	71-43-2	24 hr	2.61	n/a	n/a	60	7. 19E-03	1.31E-05	Above Average	MOVES EF MOVES EF
Till	T8	Haul Truck to Primary Crusher - Tailpipe	Benzene	71-43-2	24 hr	3.54	n/a	n/a	170	7. 19E-03	5.01E-05	Above Average	MOVES EF MOVES EF
11 n shard-forest folgon q, dry	T10	CKD/Gypsum Delivery - Tailpipe	Benzene	71-43-2	24 hr	1.57	n/a	n/a	175	7. 19E-03	2.29E-05	Above Average	MOVES EF MOVES EF
To the Sand Devery - Tapippe		Finished Cement Shipping - Idling											MOVES EF MOVES EF
14.2 LO Devey-T. Tai pipe (better by become 7-4-8/2 Annua 2-95 n/s n/s 2-24 7.39-0.9 9-68.07 Above Average MOVS 14.3 ALC Entivers 19 pipe (better by become 7-14-2/2 Annua 2-95 n/s n/s 19-92 7.38-0.9 9-68.07 Above Average MOVS 14.3 ALC Entivers 19 pipe (better by better													MOVES EF MOVES EF
14-3 ALC Delivery - Taip per Platrice) Betteren 71-49-2 Annual 2-96 r/s r/s 6600 7-190-0 3-580-0 Above Average MOVIS T4-30 ALC Delivery - Taip per later of the search 7-43-2 Annual 1-72 r/s r/s r/s 2-24 7-100-0 8-726-0 Above Average MOVIS T4-100 All Colory - Taip per later of the search 7-43-2 Annual 1-72 r/s r/s r/s r/s 1-24 7-100-0 ADVE Average MOVIS T4-100 All Colory - Taip per later of the search 7-43-2 Annual 1-72 r/s r/s	T4-1				1	2.56			224	7. 19E-03	1.31E-07		MOVES EF MOVES EF
The Ambine ways -talping (Stating)	T4-3	ALCF Delivery - Tailpipe (Future)	Benzene	71-43-2	Annual	2.56	n/a	n/a	6600	7.19E-03	3.85E-06	Above Average	MOVES EF MOVES EF
Tell	T5	Ash Delivery - Tailpipe	Benzene	71-43-2	Annual	1.72	n/a	n/a	224	7. 19E-03	8.79E-08	Above Average	MOVESEF
The comburdent of belowery—Tail page Sentence 71.43-2 Anneal 5.23 n/a n/a 2.382 7.196-30 3.396-66 Above Average MOVTS	T6-2	ALCF Delivery - Tailpipe (Future)	Benzene	71-43-2	Annual	1.31	n/a	n/a	6600	7. 19E-03	1.97E-06	Above Average	MOVESEF
Post Delivery - Talpipe	T7	Overburden Delivery - Tailpipe	Benzene	71-43-2	Annual	6.23	n/a	n/a	2382	7. 19E-03	3.39E-06	Above Average	MOVESEF
Till Finished Cement Shipping: Talippe Benzene 71.43.2 Annual 3.22 n/a n/a 55688 7.198.93 4.228.05 Above Average MOVES Till Finished Cement Shipping: Talippe Benzolajpyrene 59.32.8 24 hr 3.48 n/a n/a 10 2.798.95 1.128.08 Above Average MOVES Till Finished Cement Shipping Talippe Benzolajpyrene 59.32.8 24 hr 3.48 n/a n/a 10 2.798.95 1.128.08 Above Average MOVES Till Finished Cement Shipping Talippe Benzolajpyrene 59.32.8 24 hr 2.40 n/a n/a 10 2.798.95 7.758.99 Above Average MOVES Till Finished Cement Shipping Talippe Benzolajpyrene 59.32.8 24 hr 2.56 n/a n/a 10 2.798.95 7.758.99 Above Average MOVES Till A	T9	Fuel Delivery - Tailpipe	Benzene	71-43-2	Annual	1.64	n/a	n/a	4465	7. 19E-03	1.67E-06	Above Average	MOVES EF MOVES EF
Ti-1	T11	Finished Cement Shipping - Tailpipe	Benzene	71-43-2	Annual	3.32	n/a	n/a	55688	7. 19E-03	4.22E-05	Above Average	MOVESEF
T2	T1-1	Iron & Sand Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	24 hr	3.48	n/a	n/a	10	2.79E-05	1.12E-08	Above Average	MOVES EF MOVES EF
T4-1	T2	Iron & Sand Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	24 hr	2.40	n/a	n/a	10	2.79E-05	7.75E-09	Above Average	MOVES EF MOVES EF
Table Tabl		Ash Delivery - Tailpipe	Benzo(a)pyrene	50-32-8			n/a	n/a	_	2.79E-05		Above Average	MOVES EF MOVES EF
T6-1 LCF Delivery - Tailpipe (Existing) Benzo(a)pyrene 50-32-8 24 hr 1.31 n/a n/a 60 2.79E-05 2.31E-09 Above Average MOVES													MOVES EF MOVES EF
T6-2A ALCF Delivery - Tailpipe Entrure) - Alternative Benzo(a)pyrene S0-32-8 24 hr 2.61 n/a n/a 60 2.79E-05 5.06E-08 Above Average MOVES							•						MOVES EF MOVES EF
T8 Haul Truck to Primary Crusher - Tailpipe Benzo(a)pyrene 50-32-8 24 hr 3.54 n/a n/a 170 2.79E-05 1.94E-07 Above Average MOVES	T6-2A	ALCF Delivery - Tailpipe (Future) - Alternative			24 hr	2.61	n/a	n/a	60	2.79E-05			MOVES EF MOVES EF
T9 Fuel Delivery - Tailpipe Benzo(a)pyrene 50-32-8 24 hr 1.64 n/a n/a 14 2.79E-05 7.29E-09 Above Average MOVES T10 CKD/Gypsum Delivery - Tailpipe Benzo(a)pyrene 50-32-8 24 hr 1.57 n/a n/a 175 2.79E-05 8.88E-08 Above Average MOVES T11 Finished Cement Shipping - Tailpipe Benzo(a)pyrene 50-32-8 24 hr n/a 0.20 4.02 175 1.87E-04 3.04E-07 Above Average MOVES T1-1 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.48 n/a n/a 2978 2.79E-05 9.17E-09 Above Average MOVES T1-1 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.48 n/a n/a 2978 2.79E-05 9.17E-09 Above Average MOVES T1-2 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.48 n/a n/a 11250 2.79E-05 9.17E-09 Above Average MOVES T1-2 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.40 n/a n/a 2978 2.79E-05 6.32E-09 Above Average MOVES T2 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.40 n/a n/a 2978 2.79E-05 6.32E-09 Above Average MOVES T3-2 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.55 n/a n/a 11250 2.79E-05 2.55E-08 Above Average MOVES T4-2 LCF Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.55 n/a n/a 1650 2.79E-05 3.74E-09 Above Average MOVES T4-3 ALCF Delivery - Tailpipe (Euture) Benzo(a)pyrene 50-32-8 Annual 2.55 n/a n/a 1650 2.79E-05 3.4E-08 Above Average MOVES T4-3 ALCF Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.55 n/a n/a 1650 2.79E-05 3.4E-08 Above Average MOVES T4-3 ALCF Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.55 n/a n/a 6600 2.79E-05 3.4E-09 Above Average MOVES T4-3 ALCF Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 1.72 n/a n/a 6600 2.79E-05 3.4E-09 Above Average MOVES T6-	T8	Haul Truck to Primary Crusher - Tailpipe	Benzo(a)pyrene	50-32-8	24 hr	3.54	n/a	n/a	170	2.79E-05	1.94E-07	Above Average	MOVES EF MOVES EF
T11	Т9	Fuel Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	24 hr	1.64	n/a	n/a	14	2.79E-05	7.29E-09	Above Average	MOVES EF MOVES EF
T1-1 iron & Sand Delivery - Tailpipe	T11	Finished Cement Shipping - Tailpipe	Benzo(a)pyrene	50-32-8	24 hr	3.32	n/a	n/a	175	2.79E-05	1.88E-07	Above Average	MOVES EF MOVES EF
T2 Iron & Sand Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.40 n/a n/a 2978 2.79E-05 6.32E-09 Above Average MOVES	T1-1	Iron & Sand Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	3.48	n/a	n/a	2978	2.79E-05	9.17E-09	Above Average	MOVES EF MOVES EF
T4-1 Ash Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 2.56 n/a n/a 224 2.79E-05 5.07E-10 Above Average MOVES T4-2 LCF Delivery - Tailpipe (Existing) Benzo(a)pyrene 50-32-8 Annual 2.56 n/a n/a 1650 2.79E-05 3.74E-09 Above Average MOVES T4-3 ALCF Delivery - Tailpipe (Future) Benzo(a)pyrene 50-32-8 Annual 3.50 n/a n/a 6600 2.79E-05 2.04E-08 Above Average MOVES T5 Ash Delivery - Tailpipe (Eviture) Benzo(a)pyrene 50-32-8 Annual 1.72 n/a n/a 6600 2.79E-05 3.41E-10 Above Average MOVES T6-1 LCF Delivery - Tailpipe (Existing) Benzo(a)pyrene 50-32-8 Annual 1.31 n/a n/a 1650 2.79E-05 3.41E-10 Above Average MOVES T6-2 ALCF Delivery - Tailpipe (Future) Benzo(a)pyrene 50-32-8 Annual 1.31 n/a n/a	T2	Iron & Sand Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	2.40	n/a	n/a	2978	2.79E-05	6.32E-09	Above Average	MOVESEF
T4-3	T4-1	Ash Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	2.56	n/a	n/a	224	2.79E-05	5.07E-10	Above Average	MOVES EF MOVES EF
T5 Ash Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 1.72 n/a n/a 224 2.79E-05 3.41E-10 Above Average MOVES T6-1 LCF Delivery - Tailpipe (Existing) Benzo(a)pyrene 50-32-8 Annual 1.31 n/a n/a 1650 2.79E-05 1.91E-09 Above Average MOVES T6-2 ALCF Delivery - Tailpipe (Future) Benzo(a)pyrene 50-32-8 Annual 1.31 n/a n/a 6600 2.79E-05 7.63E-09 Above Average MOVES T6-2A ALCF Delivery - Tailpipe (Future) - Alternative Benzo(a)pyrene 50-32-8 Annual 2.61 n/a n/a 6600 2.79E-05 1.53E-08 Above Average MOVES T7 Overburden Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 6.23 n/a n/a 2382 2.79E-05 1.31E-08 Above Average MOVES T8 Haul Truck to Primary Crusher - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.54 n/a <t< td=""><td>T4-3</td><td>ALCF Delivery - Tailpipe (Future)</td><td>Benzo(a)pyrene</td><td>50-32-8</td><td>Annual</td><td>2.56</td><td>n/a</td><td>n/a</td><td>6600</td><td>2.79E-05</td><td>1.49E-08</td><td>Above Average</td><td>MOVES EF MOVES EF</td></t<>	T4-3	ALCF Delivery - Tailpipe (Future)	Benzo(a)pyrene	50-32-8	Annual	2.56	n/a	n/a	6600	2.79E-05	1.49E-08	Above Average	MOVES EF MOVES EF
T6-2 ALCF Delivery - Tailpipe (Future) Benzo(a)pyrene 50-32-8 Annual 1.31 n/a n/a 6600 2.79E-05 7.63E-09 Above Average MOVES T6-2A ALCF Delivery - Tailpipe (Future) - Alternative Benzo(a)pyrene 50-32-8 Annual 2.61 n/a n/a 6600 2.79E-05 1.53E-08 Above Average MOVES T7 Overburden Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 6.23 n/a n/a 2382 2.79E-05 1.31E-08 Above Average MOVES T8 Haul Truck to Primary Crusher - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.54 n/a n/a 1.568 2.79E-05 1.74E-07 Above Average MOVES T9 Fuel Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 1.64 n/a n/a 1.465 2.79E-05 6.48E-09 Above Average MOVES	T5	Ash Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	1.72	n/a	n/a	224	2.79E-05	3.41E-10	Above Average	MOVES EF MOVES EF
T7 Overburden Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 6.23 n/a n/a 2382 2.79E-05 1.31E-08 Above Average MOVES T8 Haul Truck to Primary Crusher - Tailpipe Benzo(a)pyrene 50-32-8 Annual 3.54 n/a n/a 55688 2.79E-05 1.74E-07 Above Average MOVES T9 Fuel Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 1.64 n/a n/a 4465 2.79E-05 6.48E-09 Above Average MOVES	T6-2	ALCF Delivery - Tailpipe (Future)	Benzo(a)pyrene	50-32-8	Annual	1.31	n/a	n/a	6600	2.79E-05	7.63E-09	Above Average	MOVES EF MOVES EF
T9 Fuel Delivery - Tailpipe Benzo(a)pyrene 50-32-8 Annual 1.64 n/a n/a 4465 2.79E-05 6.48E-09 Above Average MOVES	T7	Overburden Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	6.23	n/a	n/a	2382	2.79E-05	1.31E-08	Above Average	MOVES EF MOVES EF
, , , , , , , , , , , , , , , , , , , ,	T9	Fuel Delivery - Tailpipe	Benzo(a)pyrene	50-32-8	Annual	1.64	n/a	n/a	4465	2.79E-05	6.48E-09	Above Average	MOVES EF MOVES EF
								•					MOVES EF MOVES EF

FEL Emission Rate [g/s] = Number of Vehicles x Distance Travelled per Vehicle [km] x Operating Time per Trip [hr] x Tier 4 Emission Factor [g/HP-hr] x 192 HP engine / Averaging Period Converted to Seconds

						1						
So urce D	Source Description	Contaminant	CAS No.	Averaging Period	Round Trip Distance (km)	Number of Trips during Averaging Period	Operating Time per Trip (hr)	Power (hp)	Tier 4 Emission Factor (g/hp-hr)	Emission Rate (g/s)	Data Quality	Estimation Technique
				Cer	ment Plant							
	Tailpipe exhaust from FEL transferring sand to feed hopper	PM	PM	24 hr	0.10	8	0.010	200.0	0.015	2.78E-06	Α	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	PM	PM	24 hr	0.24	70	0.024	200.0	0.015	5.83E-05	Α	EF
	Tailpipe exhaust from FEL loading Haul Truck	PM	PM	24 hr	0.24	850	0.024	200.0	0.015	7.08E-04	А	EF
	Tailpipe exhaust from FEL transferring sand to feed hopper	PM	PM	Annual	0.10	20 85	0.010	200.0	0.015	1.98E-06	A	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	PM PM	PM PM	Annual	0.24	45000 278440	0.024 0.024	200.0	0.015 0.015	1.03E-04 6.36E-04	A A	EF EF
	Tailpipe exhaust from FEL loading Haul Truck Tailpipe exhaust from FEL transferring sand to feed hopper	PM _{2.5}	PM2.5	Annual 24 hr	0.10	8	0.010	200.0	0.015	2.78E-06	A	EF
		PM _{2.5}										EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area		PM2.5	24 hr	0.24	70	0.024	200.0	0.015	5.83E-05	Α	
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	PM _{2.5}	PM2.5	24 hr	0.24	850	0.024	200.0	0.015	7.0 8E-04	А	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	PM _{2.5}	PM2.5	Annual	0.10	20 85	0.010	200.0	0.015	1.98E-06	А	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	P M _{2.5}	PM2.5	Annual	0.24	45000	0.024	200.0	0.015	1.03E-04	А	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	P M _{2 5}	PM2.5	Annual	0.24	278440	0.024	200.0	0.015	6.36E-04	Α	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	NO ₂	10102-44-0	1 hr	0.10	4	0.010	200.0	0.300	6.67E-04	Α	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	NO ₂	10102-44-0	1 hr	0.24	16	0.024	200.0	0.300	6.40 E-03	А	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	NO ₂	10102-44-0	1 hr	0.24	40	0.024	200.0	0.300	1.60 E-02	А	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	NO ₂	10102-44-0	24 hr	0.10	8	0.010	200.0	0.300	5.56E-05	А	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	NO ₂	10102-44-0	24 hr	0.24	70	0.024	200.0	0.300	1.17E-03	А	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	NO ₂	10102-44-0	24 hr	0.24	850	0.024	200.0	0.300	1.42E-02	Α	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	S O ₂	7446-09-5	1 hr	0.10	4	0.010	200.0	0.930	2.07E-03	А	FF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	S O ₂	7446-09-5	1 hr	0.24	16	0.024	200.0	0.930	1.98E-02	A	EF
QUARRY-11		SO ₂	7446-09-5	1 hr	0.24	40	0.024	200.0	0.930	4.96E-02		EF
	Tailpipe exhaust from FEL loading Haul Truck										A	1
	Tailpipe exhaust from FEL transferring sand to feed hopper	SO ₂	7446-09-5	24 hr	0.10	8	0.010	200.0	0.930	1.72E-04	Α	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	SO ₂	7446-09-5	24 hr	0.24	70	0.024	200.0	0.930	3.62E-03	А	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	SO ₂	7446-09-5	24 hr	0.24	850	0.024	200.0	0.930	4.39E-02	А	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	SO ₂	7446-09-5	Annual	0.10	20 85	0.010	200.0	0.930	1.23E-04	А	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	SO ₂	7446-09-5	Annual	0.24	45000	0.024	200.0	0.930	6.37E-03	А	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	S O ₂	7446-09-5	Annual	0.24	278440	0.024	200.0	0.930	3.94 E-02	Α	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	Benzene	71-43-2	24 hr	0.10	8	0.010	200.0	0.002	4.42E-07	А	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	Benzene	71-43-2	24 hr	0.24	70	0.024	200.0	0.002	9.29E-06	Α	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	Benzene	71-43-2	24 hr	0.24	850	0.024	200.0	0.002	1.13E-04	A	EF
RAWSILO-11 CBM-8	Tailpipe exhaust from FEL transferring sand to feed hopper	Benzene	71-43-2 71-43-2	Annual	0.10 0.24	20 85 4 50 00	0.010 0.024	200.0	0.00 2 0.00 2	3.16E-07 1.64E-05	A	EF EF
QUARRY-11	Tailpipe exhaust from FEL operating in CBM area Tailpipe exhaust from FEL loading Haul Truck	Benzene Benzene	71-43-2	Annual Annual	0.24	278440	0.024	200.0	0.002	1.01E-04	A A	EF EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	Benzo(a)pyrene	50-32-8	24 hr	0.10	8	0.010	200.0	4.95E-08	9.17E-12	A	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	Benzo(a)pyrene	50-32-8	24 hr	0.24	70	0.024	200.0	4.95E-08	1.93E-10	A	EF .
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	Benzo(a)pyrene	50-32-8	24 hr	0.24	850	0.024	200.0	4.95E-08	2.34E-09	Α	EF
RAWSILO-11	Tailpipe exhaust from FEL transferring sand to feed hopper	Benzo(a)pyrene	50-32-8	Annual	0.10	20 85	0.010	200.0	4.95E-08	6.55E-12	Α	EF
CBM-8	Tailpipe exhaust from FEL operating in CBM area	Benzo(a) pyrene	50-32-8	Annual	0.24	4 50 00	0.024	200.0	4.95E-08	3.39E-10	Α	EF
QUARRY-11	Tailpipe exhaust from FEL loading Haul Truck	Benzo(a)pyrene	50-32-8	Annual	0.24	278440	0.024	200.0	4.95E-08	2.10E-09	А	EF
CD 3	Tailaine aybayet from EEL maying materials into trucks	PM	I DM		go Dockers	1 25	0.19	200.0	0.015	1.65E-04	A A	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks Tailpipe exhaust from FEL moving materials into trucks	PM PM	PM PM	24 hr Annual	1.90 1.90	25 7502	0.19	200.0	0.015 0.015	1.65E-04 1.36E-04	Δ	EF FF
CD-3	Tailpipe exhaust from FEL moving materials into trucks Tailpipe exhaust from FEL moving materials into trucks	PM _{2.5}	PM2.5	24 hr	1.90	25	0.19	200.0	0.015	1.36E-04 1.65E-04	A	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks	PM _{2.5}	PM2.5	Annual	1.90	7502	0.19	200.0	0.015	1.36E-04	A	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks	NO ₂	10102-44-0	1 hr	1.90	4	0.19	200.0	0.300	1.30E-04 1.27E-02	A	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks	NO ₂	10102-44-0	24 hr	1.90	25	0.19	200.0	0.300	3.30E-03	A	EF
CD-3		SO ₂	7446-09-5	24 nr 1 hr	1.90	4		200.0	0.300		A	EF
	Tailpipe exhaust from FEL moving materials into trucks	•					0.19			3.93E-02		
CD-3	Tailpipe exhaust from FEL moving materials into trucks	SO ₂	7446-09-5	24 hr	1.90	25	0.19	200.0	0.930	1.02E-02	Α .	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks	SO ₂	7446-09-5	Annual	1.90	7502	0.19	200.0	0.930	8.41E-03	А	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks	Benzene	71-43-2	24 hr	1.90	25	0.19	200.0	0.002	2.63E-05	A	EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks Tailpipe exhaust from FEL moving materials into trucks	Benzene Benzo(a)pyrene	71-43-2 50-32-8	Annual 24 hr	1.90 1.90	7502 25	0.19 0.19	200.0	0.002	2.16E-05 5.44E-10	A A	EF EF
CD-3	Tailpipe exhaust from FEL moving materials into trucks Tailpipe exhaust from FEL moving materials into trucks	Benzo(a)pyrene Benzo(a)pyrene	50-32-8	Annual	1.90	7502	0.19	200.0	0.000	4.47E-10	A	EF
CD-3	rangipe extraost from the moving materials into tracks	- penzolajpyrene	30-32-0	Alliluai	1.50	1302	0.13	200.0	0.000	+.+/L-10	_ ^	

Appendix E

Shoreline Effect Assessment

Appendix E Shoreline Effects Assessment

The Facility's kiln stack has a height of 105m above grade and is located within 600m from the shoreline of Lake Ontario. The temperature difference between water and land can result in reduced air dispersion. This shoreline effect is referred as shoreline Effects in the ADMGO. As required by ADMGO, a shoreline effect screening assessment is completed for this source using the Screen3 model. The screening assessment concluded that the shoreline effects may occur. A shoreline effect assessment is, therefore, completed using the CALPUFF model (Version 7).

As described in Section 5 of this report, the Facility is currently approved in AERMOD. The site-wide emission modelling for this study is, therefore, completed using AERMOD (Version 16216r). CALPUFF modelling is only completed for the kiln stack to generate "shoreline effects factors" which are then incorporated in the AERMOD modelling input for the kiln stack to account for potential impact of shoreline effects.

CALPUFF is an advanced non-steady-state meteorological and air quality modeling system. The model has been adopted by the Newfoundland and Labrador Department of Environment and Conservation (NL DOEC) in its "Guideline for Plume Dispersion Modelling" as the preferred model. CALPUFF is a US EPA guided model for assessing long-range transport of pollutants and in many other jurisdictions is used on a case-by-case basis for complex terrain and shore-line settings.

The methodology is described below.

E.1 CALMET SET UP

CALMET is the meteorological pre-processor for CALPUFF which establishes the 3-Dimensional meteorological field by taking into consideration local weather, terrain and land use information.

E.1.1. CALMET Modelling Domain, Terrain and Land Use Data

A modelling domain of 10km x 10km is set up for this study to be consistent with the domain size/study area for the site wide AERMOD assessment. A fine resolution of 200m is selected for the grid setting to capture the shoreline of Lake Ontario. The modelling domain and grid setting are shown in Figure E-1.

Terrain data (CDED 1-Deg) is downloaded from WebGIS. Land Use data (USQS CTG format) for the modelling domain is developed by BCX using the most recent aerial (Google Earth) image.

E.1.2 Surface, Upper Air, Precipitation and Overwater Data

The meso-scale weather forecasting model WRF-NMM was used to generate 5-year (2014-2018) input data files for CALMET (i.e., surface, upper air, precipitation and overwater data). 17 prognostic surface and upper air stations are generated for the meteorological grid, as well as one precipitation and one overwater station. The locations of these prognostic stations are shown in Figure E-1 (yellow dots).

Figure E-1 – Modelling Domain, Grid Spacing and Prognostic Weather Stations

E.1.3 WRF-NMM output validation

The WRF-NMM model predictions of wind speed and temperature are validated by comparing outputs with real field measurements at three weather stations (i.e. Toronto Pearson Airport, Peterborough and Trenton Airport). The validation assessment shows that the WRF-NMM model predictions are generally consistent with real field measurements.

E.2 CALPUFF SET UP

Critical inputs for CALPUFF include emission source input, building downwash, receptor locations, the 3-dimensional meteorological field (aka CALMET output, see Section 2.2), and dispersion coefficients. The assumptions for these critical inputs are presented in the sections below.

E.2.1 Source Data and Building Downwash

Source data (i.e. the kiln stack) including physical source parameters and building downwash input in this air quality study are used for this study.

E.2.2 Receptors

The receptors for this study include: a nested grid as per ADMGO spacing requirements covering the entire modelling domain and property line receptors extracted from the current ESDM report.

E.2.3 Dispersion Coefficient

Dispersion coefficients are calculated using values based on stability classes (PG).

E.3 CALPUFF RUNS for Shoreline Effects Factors

In order to assess the potential impact of shoreline Effects on the modelling results, 48 CALPUFF model runs are completed to obtain unit emission dispersion factors (with and without shoreline effects) for each hour. For each of the 48 model runs, the kiln stack emission rate is assumed to be 1g/s for the active hour and zero for the remaining hours. The shoreline effects factor for each hour is calculated as the ratio of maximum hourly POI concentration (with Effects)/maximum hourly POI concentration (without shoreline effects). The model runs and the hourly shoreline effects factors are summarized below.

Active Hour	With Shoreline Effects	Without Shoreline Effects	Shoreline Effects
	(Coastal Line Active)	(Coastal Line Inactive)	Factor
1	H1F	H1NF	1
2	H2F	H2NF	1
3	H3F	H3NF	1
4	H4F	H4NF	1
5	H5F	H5NF	1
6	H6F	H6NF	1
7	H7F	H7NF	1
8	H8F	H8NF	0.9965
9	H9F	H9NF	1
10	H10F	H10NF	0.9824
11	H11F	H11NF	0.9876
12	H12F	H12NF	1
13	H13F	H13NF	1
14	H14F	H14NF	1
15	H15F	H15NF	1.0106
16	H16F	H16NF	1
17	H17F	H17NF	0.9960
18	H18F	H18NF	0.9965
19	H19F	H19NF	1
20	H20F	H20NF	1
21	H21F	H21NF	1
22	H22F	H22NF	1
23	H23F	H23NF	1
24	H24F	H24NF	1

To account for potential impacts of shoreline effects in the site wide AERMOD modelling assessment, a very conservative hourly shoreline effects factor of 1.1 are applied as the corresponding diurnal hourly variable emission factor for the kiln stack source in the AERMOD input file.

Appendix F

AERMOD Supporting Files

Particle Size Distribution

Source_ID	Particle_Diameter	Mass Fraction	Particle_Density
	[microns]	[0 to 1]	[g/cm^3]
QUARRY	1.25	0.0306	1.51
QUARRY	6.25	0.2755	1.51
QUARRY	20	0.6939	1.51
QUARRYD	1.25	0.0663	1.51
QUARRYD	3.75	0.1838	1.51
QUARRYD	7.5	0.1875	1.51
QUARRYD	12.5	0.1625	1.51
QUARRYD	22.5	0.3250	1.51
QUARRYD	37	0.0750	1.51

Appendix G

Maximum Modelled Concentrations for Existing and Future Scenarios

Maximum Modelled Concentration Table

				Maximum Concentration at any				Maximum Concentration at any Receptor		r					Percentage of Ministry POI Limit at any			Percentage of Ministry POI Limit at any		
Contaminant Name	CAS#	1	Emission Rate g/s)		eptor	Background C	,		ckground)	Averaging Period	Averaging Period	Air Criteria	Source of Air	Limiting Effect	_	acility Only)	% Change	-	cl. Background)	% Change
Containmant Name	CAS#		1	(μg/m³)		(μg/m³)		(μg/m³)		Emission Rate	POI Concentration	(μg/m³)	Criteria	Limiting Effect		%)	70 Change		[%)	76 Change
Particulate		Existing	Future	Existing	Future	Existing	Future	Existing	Future						Existing	Future		Existing	Future	
PM	PM	1.04E+01	1.10E+01	4.11E+01	4.38E+01	6.73E+01	6.73E+01	1.08E+02	1.11E+02	24 hr	24 hr	120	AAQC	Visibility	34.2%	36.5%	2.3%	90.3%	92.5%	2.3%
PM	PM	1.04E+01	1.10E+01	6.66E+00	6.81E+00	3.50E+01	3.50E+01	4.17E+01	4.18E+01	Annual	Annual	60	AAQC	Visibility	11.1%	11.4%	0.3%	69.4%	69.7%	0.3%
PM2.5	PM2.5	2.67E+00	2.68E+00	8.44E+00	8.46E+00	1.23E+01	1.23E+01	2.07E+01	2.08E+01	24 hr	24 hr	27	CAAQS	See note #8	31.2%	31.3%	<0.1%	76.8%	76.9%	<0.1%
PM2.5 Combustion Gases	PM2.5	2.67E+00	2.68E+00	1.05E+00	1.05E+00	6.34E+00	6.34E+00	7.39E+00	7.40E+00	Annual	Annual	8.8	CAAQS	See note #8	11.9%	11.9%	<0.1%	84.0%	84.0%	<0.1%
Nitrogen Dioxide	10102-44-0	9.49E+01	9.49E+01	1.84E+02	1.84E+02	2.01E+01	2.17E+01	2.04E+02	2.05E+02	1 hr	1 hr	400	AAQC	Health	45.9%	45.9%	<0.1%	51.0%	51.4%	0.4%
Nitrogen Dioxide	10102-44-0	9.49E+01	9.49E+01	6.38E+01	6.38E+01	2.01E+01	2.01E+01	8.38E+01	8.39E+01	24 hr	24 hr	200	AAQC	Health	31.9%	31.9%	<0.1%	41.9%	41.9%	<0.1%
Sulphur Dioxide	7446-09-5	1.31E+02	1.41E+02	2.90E+02	3.12E+02	8.82E+00	9.25E+00	2.99E+02	3.22E+02	1 hr	1 hr	690	AAQC	Health &	42.1%	45.3%	3.2%	43.4%	46.6%	3.3%
														Vegetation Health &						+
Sulphur Dioxide	7446-09-5	1.31E+02	1.41E+02	8.69E+01	9.35E+01	8.82E+00	8.82E+00	9.57E+01	1.02E+02	24 hr	24 hr	275	AAQC	Vegetation	31.6%	34.0%	2.4%	34.8%	37.2%	2.4%
Sulphur Dioxide	7446-09-5	1.31E+02	1.41E+02	3.54E+00	3.74E+00	3.79E+00	3.79E+00	7.33E+00	7.53E+00	Annual	Annual	55	AAQC	Health &	6.4%	6.8%	0.4%	13.3%	13.7%	0.4%
·														Vegetation						
Carbon Monoxide Carbon Monoxide	630-08-0 630-08-0	9.74E+01 9.74E+01	9.87E+01 9.87E+01	2.14E+02 1.20E+02	2.17E+02 1.21E+02	1.27E+03 1.27E+03	1.27E+03 1.27E+03	1.49E+03 1.39E+03	1.49E+03 1.40E+03	1 hr 1 hr	1 hr 8 hr	36200 15700	AAQC	Health Health	0.6%	0.6%	<0.1% <0.1%	4.1% 8.9%	4.1% 8.9%	<0.1% <0.1%
Ammonia & Hydrochloric Acid		3.742.01	3.072.01	1.202.02	1.212.02	1.272.03	1.272.03	1.552.05	1.402.103	1111	0111	13700	Ange	Tieatti	0.070	0.070	10.170	0.570	0.570	10.170
Ammonia	7664-41-7	5.10E+00	5.13E+00	3.37E+00	3.39E+00	-	-	-	-	24 hr	24 hr	100	AAQC	Health	3.4%	3.4%	<0.1%	-	-	-
Hydrochloric Acid	7647-01-0	1.05E+00	1.90E+00	6.95E-01	1.26E+00	-	-	-	-	24 hr	24 hr	20	AAQC	Health	3.5%	6.3%	2.8%	-	-	-
Metals & Metal Oxides Aluminum	7429-90-5	3.56E-02	3.80E-02	2.35E-02	2.51E-02	3.55E-01	3.55E-01	3.78E-01	3.80E-01	24 hr	24 hr	12	SL-JSL	Health	0.2%	0.2%	<0.1%	3.2%	3.2%	<0.1%
Aluminum Oxide	1344-28-1	6.73E-02	7.18E-02	4.45E-02	4.75E-02	6.70E-01	6.70E-01	7.15E-01	7.18E-01	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	0.6%	0.6%	<0.1%
Antimony	7440-36-0	5.22E-04	8.56E-04	3.60E-04	5.80E-04	3.55E-03	3.55E-03	3.91E-03	4.13E-03	24 hr	24 hr	25	AAQC	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Arsenic	7440-38-2	2.20E-04	2.71E-04	2.60E-04	2.60E-04	2.12E-03	2.12E-03	2.38E-03	2.38E-03	24 hr	24 hr	0.3	AAQC	Health	<0.1%	<0.1%	<0.1%	0.8%	0.8%	<0.1%
Barium Beryllium	7440-39-3 7440-41-7	4.24E-03 3.48E-05	4.60E-03 5.49E-05	8.46E-03 3.00E-05	8.46E-03 4.00E-05	1.48E-02 3.55E-04	1.48E-02 3.55E-04	2.32E-02 3.85E-04	2.32E-02 3.95E-04	24 hr 24 hr	24 hr 24 hr	0.01	AAQC AAQC	Health Health	<0.1% 0.3%	<0.1% 0.4%	<0.1% 0.1%	0.2% 3.9%	0.2% 4.0%	<0.1% 0.1%
Boron	7440-42-8	5.31E-03	6.97E-03	3.51E-03	4.61E-03	1.23E-02	1.23E-02	1.58E-02	1.69E-02	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Cadmium	7440-43-9	4.29E-05	5.62E-05	4.00E-05	5.00E-05	7.08E-04	7.08E-04	7.48E-04	7.58E-04	24 hr	24 hr	0.025	AAQC	Health	0.2%	0.2%	<0.1%	3.0%	3.0%	<0.1%
Cadmium	7440-43-9	4.29E-05	5.62E-05	3.84E-06	4.09E-06	6.83E-04	6.83E-04	6.86E-04	6.87E-04	Annual	Annual	0.005	AAQC	Health	<0.1%	<0.1%	<0.1%	13.7%	13.7%	<0.1%
Calcium Oxide	1305-78-8 7440-47-3	5.04E-01 1.01E-03	5.47E-01 1.17E-03	3.33E-01 1.64E-03	3.62E-01 1.64E-03	5.80E-03	5.80E-03	7.44E-03	7.44E-03	24 hr 24 hr	24 hr 24 hr	0.5	AAQC	Corrosion Health	3.3% 0.3%	3.6% 0.3%	0.3% <0.1%	1.5%	1.5%	<0.1%
Chromium Cobalt	7440-47-3	2.30E-04	2.57E-04	7.00E-04	7.00E-04	7.07E-04	7.07E-04	1.41E-03	1.41E-03	24 hr	24 hr	0.1	AAQC	Health	0.7%	0.7%	<0.1%	1.4%	1.4%	<0.1%
Copper	7440-50-8	3.00E-04	4.06E-04	1.98E-04	2.69E-04	6.10E-02	6.10E-02	6.12E-02	6.13E-02	24 hr	24 hr	50	AAQC	Health	<0.1%	<0.1%	<0.1%	0.1%	0.1%	<0.1%
Iron	7439-89-6	2.95E-02	3.15E-02	1.95E-02	2.08E-02	7.85E-01	7.85E-01	8.05E-01	8.06E-01	24 hr	24 hr	4	Standard	Health	0.5%	0.5%	<0.1%	20.1%	20.2%	<0.1%
Ferric Oxide	1309-37-1 7439-92-1	4.49E-01 1.08E-03	4.55E-01 1.81E-03	1.21E+00 1.33E-03	1.21E+00 1.45E-03	2.25E+00 4.45E-03	2.25E+00 4.45E-03	3.46E+00 5.78E-03	3.46E+00 5.90E-03	24 hr 24 hr	24 hr 24 hr	25 0.5	AAQC	Soiling	4.9% 0.3%	4.9% 0.3%	<0.1% <0.1%	13.8%	13.8%	<0.1% <0.1%
Lead Lead	7439-92-1	1.08E-03	1.81E-03	5.13E-04	5.59E-04	4.45E-03	4.45E-03	4.96E-03	5.01E-03	24 hr	30 day	0.2	AAQC	Health Health	0.3%	0.3%	<0.1%	2.5%	2.5%	<0.1%
Magnesium	7439-95-4	1.80E-02	2.07E-02	1.19E-02	1.37E-02	4.73E-01	4.73E-01	4.85E-01	4.86E-01	24 hr	24 hr	72	SL-MD	Health	<0.1%	<0.1%	<0.1%	0.7%	0.7%	<0.1%
Magnesium Oxide	1309-48-4	2.98E-02	3.43E-02	1.97E-02	2.27E-02	7.84E-01	7.84E-01	8.04E-01	8.07E-01	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	0.7%	0.7%	<0.1%
Manganese Manganese in RM10	7439-96-5 7439-96-5	1.02E-02 1.02E-02	1.20E-02 1.20E-02	3.04E-02 2.53E-02	3.04E-02 2.53E-02	2.44E-02 2.44E-02	2.44E-02 2.44E-02	5.48E-02 4.98E-02	5.48E-02 4.98E-02	24 hr 24 hr	24 hr 24 hr	0.4	AAQC AAQC	Health Health	7.6% 12.7%	7.6% 12.7%	<0.1% <0.1%	13.7% 24.9%	13.7% 24.9%	<0.1% <0.1%
Manganese in PM10 Manganese in PM2.5	7439-96-5	1.02E-02	1.20E-02	1.36E-02	1.36E-02	2.44E-02	2.44E-02 2.44E-02	3.81E-02	3.81E-02	24 hr	24 hr	0.1	AAQC	Health	13.6%	13.6%	<0.1%	38.1%	38.1%	<0.1%
Mercury	7439-97-6	3.36E-04	7.66E-04	2.30E-04	5.20E-04	1.96E-05	1.96E-05	2.50E-04	5.40E-04	24 hr	24 hr	2	AAQC	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Mercury (alkyl compounds)	7439-97-6	3.36E-04	7.66E-04	2.22E-04	5.07E-04	1.96E-05	1.96E-05	2.42E-04	5.26E-04	24 hr	24 hr	0.5	AAQC	Health	<0.1%	0.1%	<0.1%	<0.1%	0.1%	<0.1%
Molybdenum	7439-98-7	9.31E-04	9.69E-04	6.16E-04	6.41E-04	3.01E-03	3.01E-03	3.62E-03	3.65E-03	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Nickel Nickel	7440-02-0 7440-02-0	3.86E-03 3.86E-03	5.39E-03 5.39E-03	1.78E-02 1.30E-03	1.78E-02 1.33E-03	2.09E-03 1.18E-03	2.09E-03 1.18E-03	1.99E-02 2.48E-03	1.99E-02 2.51E-03	24 hr Annual	24 hr Annual	0.2	AAQC	Health Health	8.9% 3.3%	8.9% 3.3%	<0.1% <0.1%	9.9%	9.9%	<0.1% <0.1%
Nickel in PM10	7440-02-0	3.86E-03	5.39E-03	1.49E-02	1.49E-02	2.09E-03	2.09E-03	1.70E-02	1.70E-02	24 hr	24 hr	0.1	AAQC	Health	14.9%	14.9%	<0.1%	17.0%	17.0%	<0.1%
Nickel in PM10	7440-02-0	3.86E-03	5.39E-03	1.09E-03	1.12E-03	1.18E-03	1.18E-03	2.27E-03	2.30E-03	Annual	Annual	0.02	AAQC	Health	5.5%	5.6%	0.1%	11.3%	11.5%	0.2%
Phosphorus	7723-14-0	1.53E-02	2.56E-02	1.01E-02	1.69E-02	-	-	-	-	24 hr	24 hr	0.5	SL-MD	Health	2.0%	3.4%	1.4%	-	-	+
Potassium Selenium	7440-09-7 7782-49-2	6.55E-02 3.66E-04	9.78E-02 5.89E-04	4.33E-02 2.70E-04	6.47E-02 4.20E-04	3.53E-03	3.53E-03	- 3.80E-03	3.95E-03	24 hr 24 hr	24 hr 24 hr	10	SL-JSL AAQC	Health Health	4.3% <0.1%	6.5% <0.1%	2.1% <0.1%	<0.1%	<0.1%	<0.1%
Silver	7440-22-4	1.88E-04	2.44E-04	1.50E-04	1.90E-04	1.77E-03	1.77E-03	1.92E-03	1.96E-03	24 hr	24 hr	1	AAQC	Health	<0.1%	<0.1%	<0.1%	0.2%	0.2%	<0.1%
Strontium	7440-24-6	7.58E-04	8.12E-04	5.01E-04	5.36E-04	1.69E-02	1.69E-02	1.74E-02	1.75E-02	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Thallium	7440-28-0	4.21E-05	5.79E-05	2.78E-05	3.83E-05	3.53E-03	3.53E-03	3.56E-03	3.57E-03	24 hr	24 hr	0.5	SL-JSL	Health	<0.1%	<0.1%	<0.1%	0.7%	0.7%	<0.1%
Tin Titanium	7440-31-5 7440-32-6	6.22E-03 2.48E-03	1.25E-02 2.62E-03	4.21E-03 1.64E-03	8.33E-03 1.73E-03	3.54E-03 1.81E-02	3.54E-03 1.81E-02	7.75E-03 1.97E-02	1.19E-02 1.98E-02	24 hr 24 hr	24 hr 24 hr	10 120	AAQC AAQC	Health Particulate	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%	0.1% <0.1%	<0.1% <0.1%
Vanadium	7440-52-0	7.84E-04	8.27E-04	2.14E-03	2.14E-03	1.78E-03	1.78E-03	3.92E-03	3.92E-03	24 hr	24 hr	2	AAQC	Health	0.1%	0.1%	<0.1%	0.2%	0.2%	<0.1%
Zinc	7440-66-6	2.12E-03	3.02E-03	1.40E-03	1.99E-03	5.16E-02	5.16E-02	5.30E-02	5.36E-02	24 hr	24 hr	120	AAQC	Particulate	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Volatile Organic Compounds	67.5.	1 0.00= ==	1 40		1 00=====		6.505.55				24:	44600		1	0.55		1 0	0.11	1	1
Acetone (2-Propanone) Acrolein	67-64-1 107-02-8	8.69E-02 1.76E-02	1.34E-01 1.90E-02	5.74E-02 1.16E-02	8.87E-02 1.26E-02	6.50E+00	6.50E+00 -	6.56E+00 -	6.59E+00	24 hr 24 hr	24 hr 24 hr	11880 0.4	AAQC AAQC	Health Health	<0.1% 2.9%	<0.1% 3.1%	<0.1% 0.2%	<0.1%	<0.1%	<0.1%
Benzene	71-43-2	2.63E-01	3.57E-01	1.16E-02 1.75E-01	2.36E-02	6.27E-01	6.27E-01	8.02E-01	8.64E-01	24 hr	24 hr	2.3	AAQC	Health	7.6%	10.3%	2.7%	34.9%	37.5%	2.7%
Benzene	71-43-2	2.63E-01	3.57E-01	5.98E-03	7.87E-03	4.84E-01	4.84E-01	4.90E-01	4.91E-01	Annual	Annual	0.45	AAQC	Health	1.3%	1.7%	0.4%	108.8%	109.2%	0.4%
Bromodichloromethane	75-27-4	1.61E-04	1.90E-04	1.06E-04	1.26E-04	0.00E+00	0.00E+00	1.06E-04	1.26E-04	24 hr	24 hr	350	SL-JSL	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Bromoform	75-25-2	2.04E-04	2.41E-04	1.35E-04	1.59E-04	0.00E+00	0.00E+00	1.35E-04	1.59E-04	24 hr	24 hr	55	AAQC	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Bromomethane Methyl Ethyl Ketone (2-Butano	74-83-9 78-93-3	5.16E-03 5.25E-04	1.32E-02 6.17E-04	3.41E-03 3.47E-04	8.73E-03 4.08E-04	0.00E+00 8.96E-01	0.00E+00 8.96E-01	3.41E-03 8.96E-01	8.73E-03 8.96E-01	24 hr 24 hr	24 hr 24 hr	1350 1000	AAQC AAQC	Health Health	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%
Carbon Tetrachloride	56-23-5	2.33E-04	2.77E-04	1.54E-04	1.83E-04	9.44E-01	9.44E-01	9.44E-01	9.44E-01	24 hr	24 hr	2.4	AAQC	Health	<0.1%	<0.1%	<0.1%	39.3%	39.3%	<0.1%
Chlorobenzene	108-90-7	6.33E-03	1.83E-02	1.40E-02	4.04E-02	0.00E+00	0.00E+00	1.40E-02	4.04E-02	1 hr	1 hr	3500	AAQC	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Chlorobenzene	108-90-7	6.33E-03	1.83E-02	2.31E-02	6.68E-02	0.00E+00	0.00E+00	2.31E-02	6.68E-02	1 hr	10 min	4500	AAQC	Health	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
Chloroethane	75-00-3 67-66-3	8.05E-03	8.84E-03	5.32E-03	5.85E-03	0.00E+00	0.00E+00	5.32E-03 1.06E-04	5.85E-03	24 hr 24 hr	24 hr 24 hr	5600	AAQC	Health	<0.1% <0.1%	<0.1% <0.1%	<0.1%	<0.1% <0.1%	<0.1% <0.1%	<0.1% <0.1%
Chloroform	07-00-3	1.61E-04	1.90E-04	1.06E-04	1.26E-04	0.00E+00	0.00E+00	1.00E-04	1.26E-04	24 NF	24 NF	1	AAQC	Health	\U.1%	\U.1%	<0.1%	<0.1%	\U.1%	

Contaminate	Recept Existing \(\)	6	% Chang <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11%
Company Comp	Existing	(%) 18	<pre><0.1% <0.1% <0.1%</pre>
Contact Cont	\(\) \(\	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.11% <0.1% <0.11% <0.15% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Content Test	0.4% 0.4% 9% <0.1% 0.1% <0.1% 0.4% <0.1% 0.4% <0.1% 0.6% <0.2.6% 0.6% <0.1% 0.6% <0.1% 0.6% <0.1% 0.4% <0.1% 0.4% <0.1% 0.4% <0.1% 0.5% <0.1% 0.6% <0.1% 0.1% <0.1% 0.1% <0.1% 0.1% <0.1% 0.1% <0.1% 0.6% <0.1% 0.6% <0.1% 0.6% <0.1% 0.6% <0.1% 0.6% <0.1% 0.6% <0.1% 0.1% <0.1%	6 0.4% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1%	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.11% <0.1% <0.11% <0.15% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Section Septil 1986 19	Control Cont	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Description 1944 1970 1960	Color Colo	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
1.0 Delicostratemen	CO CO CO CO CO CO CO CO	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
10 10 10 10 10 10 10 10	0% 6.7% 0% 22.6% 0% - 0% <0.1%	6 6.7% 6 22.6%	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <0.11% <
1.00 1.00	22.6% % - % <0.1%	6 22.6%	<0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1% -(0.1%) -(0.1% -(0.1%) -(0.1% -(0.1%) -
1.5 1.5			<pre></pre>
69.13 (19.60) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	\(\begin{array}{c c c c c c c c c c c c c c c c c c c	6	<0.1% <0.1% <0.11% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15%
Company 1985 1866 1986	\(\begin{align*} < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	<0.1% <0.1% <0.11% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15% <0.15%
Experiment 1,004-4 1,006-02 1,006-03	00	66	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Englandermen 100414 3.68 CV 3.27 CW 3.28 CW	Control Cont	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Employment 100-414 368-02 5.37-02 2.276-06 3.58-02 5.37-02 2.276-06 2.277-06 3.08-02 5.08-06 5.58-06 5.276-06 5.08-06 5.26-06 5.08-06	\(\begin{align*} < 0.1\% \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Mathymen Chordophymbors 75-07-2 2778-04 2366-06 1836-06 1385-06	0% 0.3% 1.1% 1.1% % <0.1%	0.3% 1.1% 6 < 0.1% 6 < 0.1% 6 < 0.1% 6 < 0.1% 6 < 0.1% 6 < 0.1%	<0.1% <0.1% <0.1% <0.1% <0.1%
Methylene	1.1% 1.1% 	1.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.1% 6 <0.2% 6 <0.1% 6 <0.1%	<0.1% <0.1% <0.1% <0.1%
Symptom 100425 4056 1385-04 1786-04 1786-04 1856-05 1385-04 1786-04 1856-05 1385-04 1856-04	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1	6 <0.1% 6 <0.1% 5 0.2% 6 <0.1% 6 <0.1%	<0.1% <0.1% <0.1%
1.1.1.2 Februshershame 90-20 6 1.86-04 1.78-04 2.81-04 1.35-04 1.95-04 0.000-00 9.55-05 1.126-04 24 hr 24 hr 0.5 \$1.58-05 1.05-04 1.000-00 1.126-04 0.000-00 1.35-04 1.95-04 1.95-04 24 hr 0.1 \$1.58-04 1.000-00 1	00 00 00 00 00 00 00 0	6 <0.1% 5 0.2% 6 <0.1% 6 <0.1%	<0.1% <0.1%
1.1.2 1.	0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	0.2% 6 <0.1% 6 <0.1%	<0.1%
Test-pulser 127:18-4 2.68:C94 3.96:C94 1.78:C94 2.08:C94 0.08:C94 0.08:C94 0.08:C94 7.86:C94 2.48 2.48 2.48 3.60 AAQC C. Modur 0.1% C.0.1%	0% <0.1%	6 <0.1% 6 <0.1%	
Total Defence 198-88-3 1676-01 175-01 115-01 115-01 115-01 135-04 135-04 0.000-00 0.000-	.% <0.1%	6 <0.1%	
1.1.1-Inchlorocethane	.% <0.1% .% <0.1% .% <0.1% .% <0.1%		<0.1%
1.1.2 Fire/inforcethane 79-00-5 2.38E-04 2.27E-04 1.58E-04 1.08E-04 1.08E-04 1.08E-04 1.08E-04 1.08E-04 1.08E-04 1.08E-04 2.08E-05 1.08E-04 2.08E-05 2.08E-05 2.88E-05 2.88E-	% <0.1% % <0.1% % <0.1%	% I <0.1%	<0.1%
Trichloroethylene	% <0.1% % <0.1%		<0.1%
Trichlorectivine 79-01-6 1616-04 1996-04 3256-06 3846-06 000000 000000 2.126-04 128-03 3256-06 3846-06 Annual Annual 2.3 AAQC Health 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	.% <0.1%		<0.1% <0.1%
None 75-01-4 326-04 1.866-03 2.126-04 1.286-03 0.006-01 0.006			<0.1%
Virgin Chloride 75-01-4 3.200-04 1.866-03 6.472-06 3.750-05 0.006-00 0.006-00 0.006-00 0.006-00 3.750-05 0.006-00 0	,		0.1%
Sylene 1330-207 2.11E-01 2.21E-01 7.71E-01 8.07E-01 2.60E+00 2.60E+00 2.60E+00 2.75E+00 2.4E+00 2.75E+00 2.	.% <0.1%		<0.1%
Dioxins, Furans and Dioxin-like CDD 2.38E-09 2.88E-09 1.54E-09 3.06E-08 3.06E-08 3.21E-08 3.25E-08 2.4 hr 2.4 hr 0.000001 AAQC Health 1.5% 1.9% 0.49	.% 0.1%	0.1%	<0.1%
Dioxins, Furans and Dioxin-like CDD 2.33E-09 2.88E-09 1.54E-09 1.90E-09 3.06E-08 3.06E-08 3.21E-08 3.22E-08 2.4 hr 24 hr 0.0000001 AAQC Health 1.5% 1.9% 0.49	.% 0.4%	0.4%	<0.1%
Polygotic Aromatic Hydrocarbons (PAHS)			
Eemo(a)pyrene 50-32-8 2.26E-05 2.65E-05 1.78E-05 2.07E-05 6.74E-05 6.74E-05 6.74E-05 6.74E-05 3.7E-05	% 32.1%	6 32.5%	0.4%
Benzo(a)pyrene 50-32-8 2.26E-05 2.53E-06 2.63E-06 3.46E-05 3.46E-05 3.71E-05 3.72E-05 Annual Annual 0.00001 AAQC Health 25.3% 26.3% 1.09 2.70E-070 2.70E-07 2.			
2-Chloronaphthalene 91-58-7 4.37E-04 1.19E-03 2.89E-04 7.84E-04			5.8%
1-Methylnaphthalene			1.0%
Naphthalene 91-20-3 5.30E-02 8.94E-02 3.50E-02 5.91E-02 1.21E-04 1.21E-04 3.51E-02 5.92E-02 24 hr 24 hr 22.5 AAQC Health 0.2% 0.3% 0.19 Naphthalene 91-20-3 5.30E-02 8.94E-02 1.41E-01 2.38E-01 1.21E-04 1.21E-04 1.41E-01 2.38E-01 24 hr 10 min 50 AAQC Health 0.3% 0.5% 0.29 Tetralin 119-64-2 1.28E-02 1.33E-02 8.45E-03 8.77E-03 2.80E-03 1.31E-02 1.16E-02 24 hr 24 hr 151.5 S.I-SL Health 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1		- % <0.1%	<0.1%
Naphthalene 91-20-3 5.30E-02 8.94E-02 1.41E-01 2.38E-01 1.21E-04 1.21E-04 1.41E-01 2.38E-01 2.4 hr 10 min 50 AAQC Health 0.3% 0.5% 0.29 Tetral 119-64-2 1.28E-02 1.38E-02 8.45E-03 8.77E-03 2.80E-03 2.80E-03 2.80E-03 1.13E-02 1.16E-02 2.4 hr 2.4 hr 151.5 5L-ISL Health 4.0.1%			0.1%
Tetralin 119-64-2 1.28E-02 1.33E-02 8.45E-03 8.77E-03 2.80E-03 2.80E-03 1.13E-02 1.16E-02 24 hr 24 hr 151.5 SL-ISL Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1			0.1%
Chloronated Organics Chloroperate 95-50-1 4.82E-04 5.04E-04 1.07E-03 1.11E-03 3.05E-02 3.16E-02 3.16E-02 1.hr 1.hr 30500 AAQC Health C.1%			<0.1%
1,2-Dichlorobenzene 95-50-1 4.82E-04 5.04E-04 1.07E-03 1.11E-03 3.05E-02 3.05E-02 3.16E-02 1.1 hr 1.1 hr 30500 AAQC Health < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1			
1,4-Dichlorobenzene 106-46-7 1.92E-04 2.12E-04 1.27E-04 1.40E-04 24 hr 24 hr 95 AAQC Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%	.% <0.1%	6 <0.1%	<0.1%
1,2,3-Trichlorobenzene 87-61-6 1.58E-04 1.64E-04 1.04E-04 1.08E-04 24 hr 24 hr 135 SL-JSL Health <0.1% <0.1% <0.1% 1,2,4-Trichlorobenzene 120-82-1 1.50E-04 2.04E-04 9.90E-05 1.35E-04 5.00E-02 5.00E-02 5.01E-02 24 hr 24 hr 400 AAQC Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1		-	-
1,2,4-Trichlorobenzene 120-82-1 1.50E-04 2.04E-04 9.90E-05 1.35E-04 5.00E-02 5.00E-02 5.01E-02 24 hr 24 hr 400 AAQC Health < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1		-	-
1,3,5-Trichlorobenzene 108-70-3 2.23E-05 2.30E-05 1.48E-05 1.52E-05 24 hr 24 hr 3.6 SL-JSL Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%		-	-
1,2,3,4-Tetrachlorobenzene 634-66-2 2.16E-05 2.56E-05 1.43E-05 1.69E-05 24 hr 24 hr 600 SL-JSL Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1			<0.1%
1,2,3,5+1,2,4,5-Tetrachloroben2are 608-93-5 2.17E-05 2.5E-05 1.43E-05 1.66E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1% <0.1% Pentachlorobenzene 608-93-5 2.17E-05 2.5E-05 1.44E-05 1.66E-05 24 hr 24 hr 80 SL-JSL Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0		-	-
Pentachlorobenzene 608-93-5 2.17E-05 2.52E-05 1.44E-05 1.66E-05 24 hr 24 hr 80 SL-JSL Health <0.1% <0.1% <0.1%		-	-
		-	-
Hexachlorobenzene 118-74-1 2.16E-05 2.54E-05 1.43E-05 1.68E-05 6.47E-05 6.47E-05 7.89E-05 8.14E-05 24 hr 24 hr 0.011 SL-JSL Health 0.1% 0.2% <0.1°		0.7%	<0.1%
10-2-Chlorophenol 95-57-8 1.02E-03 2.36E-03 6.76E-04 1.56E-03 24 hr 24 hr 18 SI-JSL Health 0.1% 0.1% 0.1%		- 0.770	
2-Chlorophenol (m-Chloropher 108-43-0 1.85E-04 6.57E-04 1.2E-04 4.34E-04 24 hr 15 SL-JSL Health <0.1% <0.1% <0.1%		-	-
4-Chlorophenol (p-Chlorophen 106-48-9 1.81E-04 6.23E-04 1.20E-04 4.12E-04 24 hr 15 SL-JSL Health <0.1% <0.1% <0.1%		-	-
2,3-Dichlorophenol 576-24-9 3.61E-05 4.38E-05 2.39E-05 2.90E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1%		-	-
2,4+2,5-Dichlorophenol 20-83-2 / 583-78 4.45E-05 4.87E-05 2.94E-05 3.22E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1% <0.1%		-	-
2,6-Dichlorophenol 87-65-0 3.63E-05 4.38E-05 2.40E-05 2.90E-05 24 hr 24 hr 19 SL-JSL Health <0.1% <0.1% <0.1%		-	-
3,4-Dichlorophenol 95-77-2 3.61E-05 4.38E-05 2.39E-05 2.90E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1%		-	-
3,5-Dichlorophenol 591-35-5 3.61E-05 4.38E-05 2.39E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1%		-	-
2,3,4-Trichlorophenol 15950-66-0 3.61E-05 4.38E-05 2.39E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1%		-	-
2,3,5-Trichlorophenol 933-78-8 3.61E-05 4.37E-05 2.38E-05 2.89E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0		-	-
		-	-
2,4,5-Trichlorophenol 95-95-4 3.61E-05 4.38E-05 2.39E-05 2.90E-05 24 hr 24 hr 220 SL-JSL Health <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1	0/	-	-
2,4,0-inclitorophenol 609-19-8 3.61E-05 4.38E-05 2.39E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <		-	-
3,3,3-intention phenol 4901-51-3 3.60E-05 4.37E-05 2.38E-05 2.38E-05 24 hr 24 hr 0.1 De Winimus - <0.1% <0.1% <0.1% <0.1%	-	-	-
2,3,4,6-Tetrachlorophenol 58-90-2 3.60E-05 4.37E-05 2.38E-05 2.89E-05 24 hr 24 hr 0.75 St.IJSL Health <0.1% <0.1% <0.1%	% - % -	-	-
2,3,5,6-tetrachlorophenol 935-95-5 3.60E-05 4.37E-05 2.38E-05 24 hr 24 hr 0.1 De Minimus - <0.1% <0.1% <0.1%		-	-
Pentachiorophenol 87-86-5 3.61E-05 4.38E-05 2.39E-05 2.39E-05 8.85E-04 8.85E-04 9.08E-04 9.14E-04 24 hr 24 hr 20 AAQC Health <0.1% <0.1% <0.1%	.% - .% - .% - .% -	6 <0.1%	<0.1%